MACHINE
RECOGNITION AND MORPHOLOGICAL
ANALYSIS OF SUBANTA-PADAS

Dissertation submitted to Jawaharlal Nehru University
In partial fulfillment of the requirements
For the award of the

Degree of
MASTER OF PHILOSOPHY

SUBASH

|
D

Special Centre for Sanskrit Studies
Jawaharlal Nehru University
New Delhi-110067
INDIA

2006

MACHINE
RECOGNITION AND MORPHOLOGICAL
ANALYSIS OF SUBANTA-PADAS

Dissertation submitted to Jawaharlal Nehru University
In partial fulfillment of the requirements
For the award of the
Degree of
MASTER OF PHILOSOPHY

SUBASH

|
D

Special Centre for Sanskrit Studies
Jawaharlal Nehru University
New Delhi-110067
INDIA

2006

dTo

My

Loving Mummy
Papa

Bhaitya

And

Bhabhi Ji

T ulumrsafareme g
T [Tuhag fod edd |
TG HAAo TSI |
Wpwihegeau e o feufq:

ACKNOWLEDGEMENT

I acknowledge with a deep sense of gratitude, continuous help and
encouragement from my supervisor Dr. Girish Nath Jha, which he has provided
to me despite his busy schedule. Without his able direction, active supervision,
positive attitude and motivation, it would have been extremely difficult for the
present research and development to complete. He trained me in Java
programming and developing database, creating text files and other linguistic
resources. He also helped me from time to time in programming, RDBMS
techniques, text files and dissertation writing and solved several difficulties.

I express deepest thanks and gratitude for Chairperson, Prof. Shashiprabha
Kumar and other faculty members - Dr. Hariram Mishra, Dr. Rajnish Kumar
Mishra, Dr. Santosh Kumar Shukla and Dr. Ram Nath Jha - of the Special
Center for Sanskrit Studies (SCSS), Jawaharlal Nehru University,
New Delhi, for encouraging and allowing this research to complete.

My sincere thanks to my graduation teachers Dr. Vijay Shankar Pandey, Dr.
Narendra Nath Yadav and Dr. Vidya Bhushana Kulshreshtha who motivated
me for this R & D.

I convey my earnest credit to Mummy, Papa, Bhabhi ji, and younger brother
Ramesh, whose positive view, love and extra care have made easy to complete
this work.

I am very grateful to my Bhaiya ji Mr. Vinod Kumar whose positive thoughts,
affection, extra care and financial support for me can hardly be repaid.

I am also thankful to Radhey Shyam Kumar, Rampujan and Ghanshyam. They
have always been good friends and have inspired me for this work.

I extend my gratitude to the University Grants Commission (UGC) and
Microsoft India Ltd. (MSI), who sponsored the projects (in which I worked)-
Online Multilingual Amarakosa and Devanagari handwriting
recognition for tablet PCs respectively, for providing the financial support.

My special thanks for my seniors (Priti, R.Chandrashekhar, and Sudhir K
Mishra) and juniors (Sachin, Muktanand, Diwakar Mani, Diwakar Mishra and
Surjit Kumar Singh) of the SCSS for helping me systematize and structure the
ideas for my R & D.

I am also grateful to some of the M.A. students of my centre for entering data
and collecting corpus for this research.

I express my thanks to colleagues (Renu, Anita, Shruti, Surjyakamal, Abhay),
friends from my hostel (Prashant, Payal, Sharad, Sushil, Arup) and some other
of my friends (Ram Chandra, Dhananjay Mani, Balawant, Karan, Anil, Arun,
Satyaprakash, Akhand Pratap, D.D. Tiwari and Omkar) who helped me from
time to time during this work.

Lastly, I express my sincere thanks to all the office staff of my centre (Santosh ji,

Rita ji, Haribabu ji and Lovely ji) and those who directly or indirectly helped me
for completing this work.

SUBHASH CHANDRA

Contents

ACKNOWLEDGEMENT

List of abbreviations used in the dissertation 01-01
Transliteration key used in the dissertation 02-03
Devanagri input mechanism according to Baraha software 04-04
CONTENT 05-09
INTRODUCTION 10-16
CHAPTER1 17-37
Morphological analyzers and the system of Panini 17-37
1.1 Morphological analyzers 17-27
1.1.1 Approaches and technology 17-18
1.1.1.1 Cut-and-Paste method 17-18
1.1.1.2 Finite State techniques 18-18
1.1.2 Morphological Analyzers for non Indian languages 18-24
1.1.2.1 PC Kimmo 18-20
1.1.2.2 CLAWS 20-20
1.1.2.3 Arabic morphological analysis and generation 20-21

1.1.2.4 Comprehensive morphological analysis of Chinese,
Japanese & Korean text 21-21
1.1.2.5 ARIES Natural Language tool for Spanish 21-23
1.1.2.6 Morphological analysis of Bulgarian sentence 23-23
1.1.2.7 French Morphological analyzer 23-23
1.1.2.8 Greek Morphological Analyzer 23-23
1.1.2.9 Latin parser and translator 23-24
1.1.2.10 Multilingual Verb Conjugator 24-24
1.1.2.11 Turkish Morphological analyzer 24-24
1.1.3 Morphological Analyzers for Indian languages 24-26
1.1.3.1 Morphological analyzers by Akshara Bharati Group 25-25
1.1.3.2 Hindi-Marathi-Telugu Morphological analyzers 26-26
1.1.4 Current status 26-26
1.1.5 Sanskrit morphology 26-27
1.2 System of Panini and Subanta 27-37
1.2.1 System of Panini 27-35
1.2.1.1 Technical terms of Panini 34-35
1.2.2 Nominal Inflectional Morphology (subanta) of Panini 35-37
1.2.2.1 avyaya subanta (indeclinable NPs) 36-36
1.2.2.2 Nominal Subanta (base NPs) 36-36

1.2.2.3 samasanta subanta (compound NPs)

1.2.2.4 krdanta subanta (primary derived NPs)

1.2.2.5 taddhitanta subanta (secondary derived NPs)
1.2.2.6 stripratyayanta subanta (feminine derived NPs)

CHAPTER 11
Subanta types & processes: their recognition
2.1 Constituents of Sanskrit sentence
2.1.1 subanta and its morphological types
2.1.1.1 Primary subanta
2.1.1.2 Secondary subanta
2.1.1.2.1 taddhitanta subanta
2.1.1.2.2 samasanta subanta
2.1.1.2.3 stripratyayanta subanta
2.1.1.2.4 avyaya subanta
2.1.2 tinanta and its morphological types
2.1.2.1 Primary tinanta
2.1.2.2 Derived tinanta
2.2 subanta formation processes
2.2.1 Vowel ending pratipadika
2.2.2 Consonant ending pratipadika
2.3 subanta recognition mechanism
2.3.1 Recognition of punctuations and non-subanta words
2.3.2 Avyaya recognition
2.3.3 Verb (tinanta) recognition
2.3.4 Subanta recognition

CHATER III
SUBANTA ANALYSIS
3.1 Vowel ending pratipadika
3.1.1 Nominative singular/dual/plural
3.1.1.1 Special cases/exceptions
3.1.2 Accusative singular/dual/plural
3.1.2.1 Special cases/exceptions
3.1.3 Instrumental singular/dual/plural
3.1.4 Dative singular/dual/plural
3.1.4.1 Special cases/exceptions
3.1.5 Ablative singular/dual/plural
3.1.5.1 Special cases/exceptions
3.1.6 Genitive singular/dual/plural
3.1.7 Locative singular/dual/plural
3.1.7.1 Special cases/exceptions
3.1.8 Vocative singular/dual/plural
3.2 Consonant ending pratipadika
3.2.1 Nominative singular/dual/plural
3.2.2 Accusative singular/dual/plural

37-37
37-37
37-37
37-37

38-59
38-59
38-41
38-40
38-39
39-40
39-39
39-40
40-40
40-40
40-41
41-41
41-41
41-57
42-52
52-57
57-59
57-57
58-58
58-59
59-59

60-89
60-89
60-72
60-61
61-61
62-63
63-63
63-64
65-66
66-66
66-67
67-67
67-69
69-70
70-70
71-72
72-86
72-74
74-76

3.2.3 Instrumental singular/dual/plural
3.2.4 Dative singular/dual/plural
3.2.5 Ablative singular/dual/plural
3.2.6 Genitive singular/dual/plural
3.2.7 Locative singular/dual/plural
3.2.8 Vocative singular/dual/plural
3.3 Complicated subantas and ambiguity handling
3.3.1 Ambiguous pratipadika
3.3.1.1 Ambiguity due to end-character
3.3.1.2 Morphological ambiguity
3.3.2 Ambiguous vibhaktis
3.3.2.1 Always ambiguous vibhaktis

CHAPTER 1V
ONLINE SUBANTA RECOGNIZER AND ANALYZER
4.1 Description of SRAS
4.1.1 Architecture of the system
4.1.1.1 Multi-layered architecture
4.1.1.2 The front-end: online interface
4.1.1.3 The back-end: database / txt files
4.1.1.4 Database connectivity
4.1.1.5 The web server
4.1.1.5.1 Apache Tomcat:
4.1.1.5.2 Java Servlet Technology
4.1.1.5.3 Java Server Pages
4.1.2 Module Description
4.1.2.1 RSubanta
4.1.2.1.1 Preprocessor / Recognizer
4.1.2.1.2 Punctuation checker
4.1.2.1.3 non-subanta checker
4.1.2.1.4 Subanta Recognizer
4.1.2.2 Subanta Analyzer
4.2. Test Corpora
4.3 How it works
4.3.1 Result analysis

CONCLUSION

Limitations of the system
Limitations of the recognition process
Limitations of the analysis process
Ambiguity resolution strategies

Accuracy of results

Sample: 1

Output after recognition and analysis of input text

Processing speed

Future R&D

76-78
78-79
79-81
81-83
83-85
85-86
87-89
88-89
88-88
88-89
89-89
89-89

90-104
90-104
90-101
90-95
90-90
91-91
91-94
94-94
94-95
94-94
95-95
95-95
95-101
99-100
97-97
97-99
99-100
100-100
100-101
102-102
102-104
104-104

105-114
105-107
105-106
106-107
107-107
107-109
109-109
109-111
112-112
112-114

APPENDICES 115-122

APPENDIX- I 115-115
APPENDIX- II 116-116
APPENDIX- III 117-117
APPENDIX- IV 118-118
APPENDIX-V 119-119
APPENDIX- VI 120-120
APPENDIX- VII 121-121
APPENDIX- VIII 122-122
BIBILIOGRAPHY 123-135
FIGURES
Figure- 1.1 19-19
Figure- 4.1 91-91
Figure- 4.2 92-92
Figure- 4.3 98-98
Figure- 4.4 102-102
TABLES
Table-1 12-12
Table-1.1 30-30
Table-1.2 33-34
Table-2.1 58-58
Table-2.2 59-59
Table-3.1 60-61
Table-3.2 61-61
Table-3.3 62-63
Table-3.4 63-63
Table-3.5 64-64
Table-3.6 65-66
Table-3.7 66-66
Table-3.8 66-67
Table-3.9 67-67
Table-3.10 68-69
Table-3.11 69-70
Table-3.12 70-70
Table-3.13 71-72
Table-3.14 73-74
Table-3.15 75-76
Table-3.16 77-78
Table-3.17 78-79
Table-3.18 80-81

Table-3.19 81-83

10

Table-3.20 83-85

Table-3.21 85-86
Table-3.22 87-88
Table-4.1 88-89
Table-5.1 108-108

(SRAS) CD 139-139

11

R&D =

SRAS
recognizer

AD =
SK =
KV =
NLP =
Languages

Al =
Intelligence
NPs

VPs =

Ay aadapagzs
I

—
1

—_
I

List of abbreviations used in the dissertation

Research and
Development
Subanta

and Analyzer
Astadhyayt

Siddhantakaumudi

Kasikavrtti
Natural

Processing
Artificial

subanta-padas

tinanta-padas

gfergar

3-2
3-3
4-1
4-2
4-3
5-1
5-2
5-3
6-1
6-2
6-3
7-1
7-2
7-3
8-1
8-2
8-3

12

GOIEIRECEE]
ERIEUECERE]
=g T
geff e
geff wgere
qoaHT Thao
LECRIRECEE
ot agaa
g8t Tshaee
LERECEE)
wil sgaee
T Tshadad
Tadr Baa
HHT ggaw
T TshaeT
grared Baee
e agaad

Transliteration key used in the dissertation

BB e p BPRREFEE BTSSRI ol il B bbb 5 v b

(S Ca =l =g G S Ul R 2 TR L

Devanagri Input Mechanism according to Baraha software (http://www.baraha.com) for SRAS
website

INTRODUCTION

Introduction

The dissertation is an R&D effort at the M. Phil. level for developing a Subanta Recognition and

Analysis System (SRAS) based on the subanta formulations of Panini. The work consists of the

following —

e comprehensive research on the subanta rules of Astadhyayi (AD), Siddhanta Kaumudi

(SK), and Kasika Vrtti (KV),

e formalizing the subanta rules of Panini and developing the rule base,

e creating linguistic resources appropriate for subanta recognition and analysis

O

o

creating an example base of pronouns, exceptions, and other typical subantas

creating a database of basic verb forms of about 90,000 verbs (of 500 commonly

occurring verb roots)
creating an avyaya list of 520 entries
creating a test corpus of 120 electronic files of modern Sanskrit usage

creating a testing corpus of 500 common verb roots with added /yap primary

suffix ending

creating a testing corpus of 500 common verb roots with added ktva primary

suffix ending

creating a testing corpus of 500 common verb roots with added fumun primary

suffix ending
creating a corpus of Paficatantra stories

creating another corpus of some stories, essay and other from Sanskrit magazines

and other resources

e studying the feasibility of a Unicode online system for subanta recognition and analysis

e evaluating the tools and techniques used — JSP for front end, Java for servlet objects,
and MS-SQL Server 2005 for backend, JDBC for connectivity and Apache-Tomcat for

web server

e creating two systems — one for running in a server based non-portable environment with
RDBMS as back-end, and other for stand-alone like environment but on Tomcat/Apache

web server

The SR&AS work-flow can be understood in the following diagram —

Sanskrit text

)
PREPROCESSOR
)
NOMINAL RECOGNIZER SANDHI RULE
DATABASE
! 7 !
LINGUISTIC N MORPHOLOGICAL - RULE BASE
RESOURCES ANALYZER
1 ! 7
SUBANTA SUBANTA RULE
EXAMPLE BASE DISPLAY
)

OUTPUT

The SR&AS gives 90 % of result when tested on the corpus. The result analysis was done on
the following corpus (UTF-8, Devanagri) —

S.No. | File Theme Source Words | Time in sec.
1 Corpus-1 raja sagarah andesah 609 3

2 Corpus-2 | samrata asokah sandesah 916 32
3 Corpus-3 ekah nibandhah sandesah 882 3

4 Corpus-4 | caca neharuh sandesah 332 1

5 Corpus-5 | sarasvatt vandana and a story sandesah 241 1

6 Corpus-6 adhunika prasasanah sandesah 1045 35
7 Corpus-7 | ekah vanikah sandesah | 849 2

8 Corpus-8 | pasya me rapani sandesah 1328 4

9 Corpus-9 Sanskrit siksa sandesah 306 2
10 Corpus- sanghe Saktih sandesah 4207 6

10

Table- 1 : test corpus

Previous work

The Indian Heritage Group of the Centre for Development of Advanced Computing (CDAC) has
developed a system called DESIKA, which claims to process all the words of Sanskrit and
includes generation and analysis (parsing). It claims to have an exhaustive database based on
amarakosa, a rule-base using the grammar rules of Panini's astadhyayt and heuristics based on
nyaya & mimamsa Sastras for semantic and contextual processing. However, the system (as

available at the TDIL site') has subanta generation only and even that does not work properly.

Huet has developed a Grammatical Analyzer System, which tags subanta-padas by analyzing

sandhi, samdsa and sup affixation. This system is available online at:

! http://tdil.mit.gov.in/download/Shabdabodha.htm

http://pauillac.inria.fr/~huet/SKT/sanskrit.html. The system suffers from weaknesses in terms of

not being rooted in the Panini's system. As a result, there are so many errors that it practically

becomes unusable. Secondly, the Huet’s system takes phrases and not full sentences or texts.

The Rashtriya Sanskrit Vidyapeeth, Tirupathi under the leadership of Prof. K. V.
Ramakrishnamacharyulu (currently Vice Chancellor of Rajasthan Sanskrit University) has done
commendable work on the Sansk-net project. This Project was proposed by the Indian Heritage
Group (IHG), Real-Time Systems Group (RTSG), and Center for Development of Advanced
Computing (C-DAC), Bangalore, to be an initiative with Rashtriya Sanskrit Vidyapeetha
(RSVP), Tirupati. The objectives of this project are- to present the database available in different
institutions in a computer framework, develop the hardware, software and the technical
capability to place the information in the modern technical framework, computer linkage among
different institutions so that each institution can have access to the database available in the other
institutions, make use of the principles and techniques available in nyaya, vyakarana, vedanta
and vedanga for developing new paradigms for the computer, packages for training for the
faculties in the scientific work and sastraic world for making best use of the infrastructural
facility and facilitate preservation of the information on rare manuscript, Vedic literature and
sastras. Prof. Vineet Chaitanya and Amba Kulkarni are visiting the institution and are currently

guiding several Sanskrit R&D initiatives with far reaching consequences.

Vanasthali Vidyapeeth, Vanasthali, Rajasthan, has also been working on Sanskrit. Jawaharlal
Nehru University finished the CASTLE (Computer Assisted Sanskrit Teaching and Learning
Environment) project and some related work in this area like Sanskrit processing tools and
Sanskrit authoring system. Some of these may be available on the TDIL website

http//tdil.mit.gov.in.

Academy of Sanskrit Research, Melkote, Mysore has been actively involved in bringing scholars
doing technology R&D for Sanskrit and sastras on a single platform. In 1993, it organized a
seminar on Sanskrit and computer based linguistics and in 1994, a seminar on [Interface
Mechanisms in sastras and Computer Science. The latter, among other things, brought out

similarities in the traditional Indian theories and principles of Artificial Intelligence.

The Special Centre for Sanskrit Studies, Jawaharlal Nehru University, New Delhi is currently
engaged in the following R&D - karaka Analyzer, sandhi splitter and analyzer, verb analyzer,
NP gender agreement, POS tagging of Sanskrit, online Multilingual amarakosa, Panini's
AstadhyayT search engine, online Mahabharata indexing and Jha (2006) presented a model of
Sanskrit Analysis System (SAS)”. The RCILTS project under Prof. G.V. Singh at the School of

Computer and Systems Sciences has prepared useful linguistic resources for Sanskrit.

Morphological analyzers for Sanskrit, Telugu, Hindi, Marathi, Kannada and Punjabi have been
developed by Akshara Bharathi Group at Indian Institute of Technology’, Kanpur, and
University of Hyderabad funded by Ministry of Information Technology the project claims to
have 95% coverage for Telugu (arbitrary text in modern standard Telugu), and 88% coverage
for Hindi. This system is available on the site for downloading as well as online at:

http://www.iiit.net/ltrc/morph/index.htm

Anusaaraka (developed by Akshar Bharati group, IIIT, Hyderabad) is a computer software which
renders text from one Indian language into another, a sort of machine translation. It produces
output which is comprehensible to the reader, although at times it might not be grammatical.

The system is available at the IIIT Hyderabad site*)

How is this work different?
The work is different from existing research in the following ways —

1. no online RDBMS based recognizer-analyzer is available till date, which accepts and
displays results in Unicode Devanagari script but this system takes Unicode Devanagri
text and displays results in Devanagari,

2. this system takes Devanagari utf-8 text as input and delivers Devanagari utf-8 text output

using a Java servlet — Apache-Tomcat - JDBC - RDBMS technology,

2 Jha, Girish Nath et al, “Towards a Computational analysis system for Sanskrit” in the proceeding of first
National symposium on Modeling and Shallow parsing of Indian Languages at Indian Institute of
Technology Bombay pp 25-34 on 2™ to 4™ April 2006

3 http://www.iiit.net/Itrc/morph/index.htm access on Feb 13th 2006
4 http://www.iiit.net/ltrc/Anusaaraka/anu_home.html

10

3. gives a comprehensive computational analysis of subanta-padas in a Sanskrit text, and
does basic tagging of verbs and avyayas too,

4. uses a hybrid approach of Paninian formalism and example-based techniques to process
input text. It works on the morphological nature of bases and applies the vibhakti
information for processing,

5. the system can be used for larger processing of Sanskrit for text simplification and

machine translation

Summary of chapters

Chapter I discusses morphological analyzers, current status of R&D in this field, structure and

organization of of Astadhyayi (AD), and subanta of Panini.

Chapter II discusses subanta formalism of Panini and mechanisms to recognize verb, avyaya

and subanta in Sanskrit text.
Chapter I discusses the analysis of subanta-padas.

Chapter IV discusses the implementation aspects — the front end, Java objects, databases,
linguistic resources (corpus and rule bases and example bases), how they work and what is basic

requirement of the system and how to apply sandhi and subanta rule where ever necessary.

Conclusion discusses future R&D, limitations of the system and result analysis.

Limitations
e Some verbs have the same form as subantas, for example 9afd, T9:, T the system

will exclude such subantas as verbs.

e The morphological ambiguity of several vibhaktis like ¥TH, 3ﬁ'{:[, ¥y persist when
processed in isolation. These can be solved at the larger level.

e It does not split the samdsas into constituent subantas by way of reverse sandhi so that
reverse subanta can be done. This will be implemented with the samasas component.

e In some cases, the recognition of the base form is ambiguous, for example, for the T

ending and ¥ ending pratipadikas, the last characters change in € and ¥ respectively. So

11

system ca not recognize correct pratipadikas. In this condition, the system will give other

possible results. For example: fﬁ'c{, %1‘:{, digeh, g etc.

12

Chapter-1

MORPHOLOGICAL ANALYZERS AND THE
SYSTEM OF PANINI

13

1.1. Morphological analyzers

Morphological analyzers are critical for any useful natural language system. This is more
so for morphology rich Indian languages. Even for configurational languages like English, a
syntactic parse will have to go down further to the morphology level. The variation and
arbitrariness in the behavior of morphemes have been challenges for most analyzers.

Traditionally morphological processors have been used for the following tasks—

e Analysis
= Taggers
= Chunkers

* Word breakers/lemmatizers
e Word builders
= Paradigm generator
Recent advancements in this field for building useful analyzers have been in last 10-15

years. The field has become more applied now than being just academic research.

1.1.1 Approaches and technology

Computational morphology has been following simple rule based string processing
techniques as well as finite state techniques depending on the nature of morphology in each

language.

1.1.1.1 Cut and Paste method

Cut and paste is a very popular method in computational linguistics. The canonical
form is derived by removing and adding letters to the end of a string. The best known ancestor of
these systems dates back to the 1960s’.

Another system known as MORPHOGEN (Petheroudakis, 1991) is a commercial toolkit
for creating sophisticated cut and paste analyzers®. The MAGIC (Schuller, Zierl, 1993) is a cut

> Allen, J., Hunnicutt, M. S., and Klatt, D. (1987). From text to speech---the MITalk system. MIT Press, Cambridge,
Massachusetts.

6 Petheroudakis, J. (1991). MORPHOGEN automatic generator of morphological information for base form reduction.
Technical report, Executive Communication Systems ECS, Provo, Utah.

14

and paste rule based system in which rules are applied in advance to produce the right allomorph

for every allowed combination of a morpheme’

1.1.1.2 Finite State techniques

Finite state techniques are used in cases where large lexicons are to be checked. It also
explains morphotactics better than the cut-paste method. Automatic recognition and generation
of word forms was introduced early 80s. Rules of morphological alternations could be
implemented using FSTs as a finite state network (Johnson 1972, Kaplan and Kay 1994)%. First
practical application of model appeared in the 90s (Koskenniemi 83, Karttunen 1993, Antworth
1990, Kartunnen and Beesley 1992, Ritchie, Russell et al, 1992, sproat 1992)9. These systems
used linked letter trees for the lexicon and parallel FSTs encoding morphemic alternations. The
FS techniques are generally used for searching large scale spellchecking wordlists. They also

allow bi-directional processing (i.e. both generation and analysis can be performed)

1.1.2 Morphological Analyzers for non Indian languages

Some morph-analyzers have been developed of foreign languages also. Many analyzers
available on web, some of these details follow:
1.1.2.1 PC Kimmo

PC-KIMMO is a new implementation for microcomputers of a program dubbed KIMMO
after its inventor Kimmo Koskenniemi (Koskenniemi 1983). It is of interest to computational
linguists, descriptive linguists, and those developing natural language processing systems'’. The
program is designed to generate (produce) and/or recognize
(parse) words using a two-level model of word structure in which a word is represented as a

correspondence between its lexical level form and its surface level form. Work on PC-KIMMO

" Schuller, G., Zierl, M., and Hausser, R. (1993). MAGIC. A4 tutorial in computational morphology. Technical report,
Friedrich-Alexander Universitat, Erlangen, Germany.
8 Kaplan, Ronald M., and Kay, Martin (1981). Phonological Rules and Finite-State Transducers. Paper presented at
the Annual Meeting of the Linguistic Society of America. New York.
? Kimmo Koskenniemi. Two-level morphology: A general computational model for word form recognition and
production. Publication No: 11, Department of General Linguistics, University of Helsinki, 1983.

10} ttp://www.silorg/pckimmo/ accessed on 25th December 2005

15

began in 1985. A PC-KIMMO description of a language consists of two files provided by the
user:
¢ arules file, which specifies the alphabet and the phonological (or spelling) rules,
and
e alexicon file, which lists lexical items (words and morphemes) and their glosses,
and encodes morph tactic constraints.

The theoretical model of phonology embodied in PC-KIMMO is called two-level
phonology. The two functional components of PC-KIMMO are the generator and the recognizer.
The generator accepts as input a lexical form, applies the phonological rules, and returns the
corresponding surface form. It does not use the lexicon. The recognizer accepts as input a surface
form, applies the phonological rules, consults the lexicon, and returns the corresponding lexical
form with its gloss.

Figure 1 shows the main components of the PC-KIMMO system'*.

Fm———————— + Fm———————— +
| RULES | | LEXICON |
-t + +——— +————+
| === + Fmmmmmm |
\ |
v v
Surface Form: +-—-————-—--""""""--—= + Lexical Form:
spies -—-———-- > | Recognizer |====> “spy+s
Fom + [N (spy) +PLURAL]
\
v
Fm—— +
spies <-—-————--— \ Generator | <===—- spy+s
D it T +

Figure 1.1 Main components of PC-KIMMO

PC-KIMMO runs on the Windows, Macintosh and UNIX systems. There are two
versions of the PC-KIMMO release, one for IBM PC compatibles and one for the Macintosh.
Each contains the executable PC-KIMMO program, examples of language descriptions, and
the source code library for the primitive PC-KIMMO functions. The PC-KIMMO executable
program and the source code library are copyrighted but are made freely available to the

general public under the condition that they not be resold or used for commercial purposes.

" http://www.sil.org/pckimmo/

16

The PC-KIMMO release contains the executable PC-KIMMO program, the function library,
and examples of PC-KIMMO descriptions for various languages, including English, Finnish,
Japanese, Hebrew, Kasem, Tagalog, and Turkish. These are not comprehensive linguistic

descriptions; rather they cover only a selected set of data'”.

1.1.2.2 CLAWS

CLAWS (Constituent Likelihood Automatic Word-tagging System) > POS tagging
software for English text has been continuously developed by University Centre for Computer
Corpus Research on Language (UCREL) in early 1980s. The latest version of the tagger,
CLAWS-4, was used to POS tag 100 million words of the British National Corpus (BNC).
CLAWS, has consistently achieved 96-97% accuracy (the precise degree of accuracy varying
according to the type of text). Judged in terms of major categories, the system has an error-rate
of only 1.5%, with c.3.3% ambiguities unresolved, within the BNC. More detailed analysis of the
error rates for the C5 tagset in the BNC can be found within the BNC Manual'*.

1.1.2.3 Arabic Morphological Analysis and Generation
Kenneth R. Beesley at the Xerox Research centre Europe, chemin de Maupertuis, 38240
MEYLAN, France has been developed an Arabic Morphological Analysis and Generation.

Arabic morphological analyzer and generator, which was built using Xerox Finite-State

Technology. The system accepts Modern Standard Arabic words and returns morphological
analyses and English glosses. Arabic words are displayed in Arabic script using Java applets.
This lexicography and Arabic-language consultation for the research system was provided by
Tim Buckwalter. The Arabic "Yarb" font used in the

interfaces was created by Yannis Haralambous. System design, interfaces, Arabic-script

rendering, and computational linguistics were done by Ken Beesley. Arabic language consulting

and lexicography for the commercialization in 2002 was provided by Martine Pétrod"

12 http://www.sil.org/pckimmo/

13 http:// www.comp.lancs.ac.uk/ucrel/claws access on 15" January 2006

14
www.comp.lancs.ac.uk/ucrel/claws

15 http://www.xrce.xerox.com/competencies/content-analysis/arabic/

17

1.1.2.4 Comprehensive morphological analysis of Chinese, Japanese and Korean
text

Asian language analyzers are used in some of the world’s most transaction-heavy
environments, like Google’s search engine and Amazon’s e-commerce site. Rosette Base
Linguistics for Chinese, Japanese and Korean are extremely accurate and reliable solutions to
help complex applications process unstructured Asian language text by conquering some of these
languages’ many challenges, such as the use of numerous scripts and absence of spaces between
words. Using advanced morphological analysis, Asian Base Linguistics perform functions
critical for analyzing Asian text such as segmentation, lemmatization, noun decompounding,

part-of-speech tagging, sentence boundary detection, and base noun phrase analysis'®.

1.1.2.5 ARIES Natural Language Tools for Spanish

The ARIES Natural Language Tools make up a lexical platform for the Spanish
language. These tools can be integrated into NLP applications. They include: a large Spanish
lexicon, lexical maintenance, access tools, and morphological analyzer and generator.

Non-exclusive, non-transferable licenses are available for the following components:

e The Prolog GRAMPAL analyzer/generator

A public domain demonstration system written in Prolog of morphological treatment
and lexicon. It includes a small demo lexicon, a DCG grammar
for word formation and some predicates to test both analysis and generation. It runs under
Sicstus Prolog 2.1.9.

e The Prolog GRAMPAL dictionary
A collection of Prolog predicates suitable for use with the public domain GRAMPAL
DCG grammar. It is capable of generating/recognizing well formed inflected forms for
verbs, nouns and adjectives. It has no adverbs, determiners, conjunction, prepositions,
etc. It does not treat clitic pronoun attachment or derivatives.

e The expanded ARIES dictionary

16
http://www.basistech.com/base-linguistics/asian/

18

A collection of expanded entries (allomorphs) with morphological information. It
contains a full set of morphemes dealing with clitic pronoun attachment (but without verb
marking for correct attachments). It includes information about some derivative
morphological processes (inflected adjectives from past participles and adverbs ended in
"-mente" from adjectives).

e The source ARIES lexical base
A collection of inflectional models, rules for off-line computing of allomorphs,
unexpanded lemma entries, lexicalized irregular words. It is the most complete source of
information we have available and the most useful for dictionary maintenance. A tool for
expanding the source dictionary to the expanded dictionary is also provided. The current
size of this lexicon is 38,500 lemma entries (21,000 nouns, 10,000 adjectives, 7,500 verbs
and 500 auxiliary words) plus more than 600 inflectional morphemes.

e Access tools
The C/C++ programming interface for lexical access to the ARIES dictionary: It is a set
of tools and libraries to build tree indexes to the allomorph dictionary and to retrieve
them by an application.

e Morphological analyzer
The C/C++ morphological analyzer that makes use of the lexical interface mentioned

above. This permits to improve efficiency by integrating word

segmentation with lexical access also. By now, it is a (pseudo)-unification chart based

parser for context-free morphological grammars.

These system supported platforms are UNIX and DOS Operating System with GNU gcc/g++
(djgpp for DOS) compilers. Tools have been tested MSDOS, HP-UX 9.05, SunOs 4.1.3 and

Solaris 2.4'7.

1.1.2.6 Morphological analysis of Bulgarian sentence

17

www.mat.upm.es/~aries/description.html

19

For a couple of years a system of machine dictionaries a lexical database for the
Bulgarian language and a morphological processor have been developed at the Department of
Computer Science of the University of Plovdiv. The system for lexical database management is

situated on a WEB server'®.

1.1.2.7 French Morphological analyzer
The ARTFL Project: morphological analysis using the INFL analyzer allows you to enter
one or more French words (lower case only, no punctuation) at the prompt and returns the

context-free morphological analysis for each'.

1.1.2.8 Greek Morphological Analyzer
The Perseus Project: morphological analysis using the morphological analyzer allows you
to enter one or more Greek words in Latin transliteration at the prompt and returns the

morphological analysis for each term?.

1.1.2.9 Latin parser and translator 0.96

This is a Visual Basic program which translating from Latin into English developed by
Adam McLean. The alternative translations for ambiguous words have been extended, and the
user can now edit, within the program, the Latin as well as English translation files. Version 0.96
has fixed a number of minor bugs in the Latin parsing, added some extra help information,

changed the program layout a little, and now comes with an installer?'.

1.1.2.9 Multilingual Verb Conjugator
Multilingual verb conjugator, conjugate at least some of the regular verbs in 27 different

languages. Database of this system have been cover 27 different languages including Italian,

18 http://www.uni-plovdiv.bg/dcs/morphe.htm

19 http://humanities.uchicago.edu/orgs/ARTFL/forms_unrest/analyze.query.html

20 L. .
http://www.perseus.tufts.edu/cgi-bin/morphindex

21 . .
http://www.logosconjugator.org/newverb/verba_dba.verba main.create_page?lang=en

20

French, Spanish, Polish, German, Esperanto, English, Latin, Portuguese, Greek, Finnish, Czech,

Croatian, Sicilian. It is a work in progress that still lacks many verbs®.

1.1.2.10 Turkish Morphological analyzer

This analyzer has been developed using the two-level transducer technology developed

by Xerox. It can process near about 900 forms per second. This implementation of Turkish uses

about 30,000 Turkish root words.

1.1.3 Morphological Analyzers for Indian languages

The R & D for morphological analyzers for Indian languages was spearheaded by setting

up of RCILTS (Resource Center for Indian Languages Technology Solutions) by the Ministry of

Communications and Information Technology (MCIT)*. The leading resource centers are —

e [IIT, Hyderabad

e [IT Kanpur

e [IT Kharagpur
e [IT Mumbai

Much work in the area of NLP in India has been carried out is still on at several places

and in several languages. Of particular mention is the works carried out in

National Centre for Software Technology (NCST)

Indian Statistical Institutes (ISI)

Thapar Institute of Engineering and Technology

Utkal University, Anna University

Chennai, Bhubaneshwar,

A tagged text corpus developed from using the web as source of data in Bengali at
Jadavpur University,

Kolkata and University of Hyderabad,

Indian Institute of Science, (IISc) Bangalore

Central Electronics Engineering Research Institute (CEERI), Pilani

2 http://www.nlp.cs.bilkent.edu.tr/cgi-bin/tma

3 http://www.mcit.gov.eg/

21

Tata Institute of Fundamental Research, Mumbai

An analyzer being developed for Manipuri
IBM, India research lab, Microsoft India, Tata Consultancy Services, HP, HCL and
Webdunia etc.

Work on Sanskrit informatics has been going on at following place

C-DAC (Pune)

Special centre for Sanskrit studies, Jawaharlal Nehru University, New Delhi
Vanashtali Vidyapeeth, Rajasthan

Rastriya Sanskrit Vidyapeeth Tirupathi

Lal Bahadur Shastri Rastriya Sanskrit Vidyapeeth, New Delhi.

Academy of Sanskrit Research, Melkote, Mysore

1.1.3.1 Morphological Analyzers by Akshara Bharathi Group

Morphological analyzer for Sanskrit, Telugu, Hindi, Marathi, Kannada and Punjabi have

been developed by Akshara Bharathi group at Indian Institute of Technology, Kanpur, India and

University of Hyderabad, Hyderabad, India (funded by Ministry of Information Technology,

India) and claim for the 95% coverage for Telugu (for arbitrary text in modern standard Telugu)

and 88% coverage for Hindi.

1.1.3.2 Hindi-Marathi-Telugu Morphological analyzers*

This morphological analyzer allows you to choose your language and your font. It

includes links to pages with other linguistic resources for Indian languages and English,

dictionaries the National Institute of Information Technology in India.

1.1.4 Current status

24 ...
http://www.iiit.net/ltrc/morph/morph_analyser.html

22

The Resource Centre for Indian Languages Technology solution Indian Institute
Technology Guwahati has developed two morphological analyzers for Assamese and Manipuri.
They have been used both in the spell checker and OCR systems. Both the morphological
analyzers use the technique of stemming where in the affixes are either deleted or added to arrive
at the root words. The system is not available site but detail is available on the IIT Guwahati site:

http://www.iitg.ernet.in/rcilts/r_d.htm

1.1.5 Sanskrit morphology

The study of the structure and form of words in languages or a language, including
inflection, derivation, and the formation of compounds is called morphology. In Sanskrit, a
syntactic unit is called pada. Cordona® (1988) posits the formula for Sanskrit sentence (N-
E"p...(V-E")p. Pada can be nominal (subanta) or verbal (tinanta). These forms are formed by
inflecting the stems and hence they are part of Sanskrit inflectional morphology. The derivational
morphology in Sanskrit studies primary forms (krdanta) and secondary forms (taddhitanta),
compounds (samasa), feminine forms (str7 pratyayanta) etc.

Sanskrit has two types of morphology- nominal and verbal. Sanskrit has approximately
2014 verb roots (including kandvadi), classified in 10 ganas, the derived verb forms can have 12
derivational suffixes?®. These can have atmanepadi and prasmaipadi. A verb root may have
approximately 2190 (tense, aspect, number etc.) morphological forms. Sanskrit Nominal
morphology of two types, Primary [krdanta (roots forms that end with krt suffixes)] and
secondary [faddhitanta (noun forms that end with taddhita suffixes)]. Secondary nominal
morphology may be of following types like- samasanta (compound nouns), stripratyayanta
(feminine forms) etc. They can also include upasargas (prefix) and avyayas (indeclinables) etc.
According to Panini, there are 21 morphological suffixes (seven vibhaktis and combination of
three numbers = 21)*’ which are attached to the nominal bases (pratipadika)®® according to

syntactic category, gender and end character of the base.

* George Cardona, 1988 Panini, His Work and its Traditions, vol ... i (Delhi: MLBD, 1988)
2 G-I~ TR - I — N ST SSarfaad — forsareeqer |

poic) s’?rsr s =f S T o
27@@%@@@@%&%@@@@ 1812111

mfaam'{qaw TrfaufdaRe 121218411, ﬁﬁa’ﬁﬂﬂm& 12IR1SEN

23

1.2. System of Panini and Subanta

1.2.1 System of Panini

Panini's grammar AD (approximately 7th BCE) is important for linguistic computation
for two reasons. One, it provides a comprehensive and rule based account of a natural language
in about 4000 rules - the only complete grammatical account of any language so far. Two, the
model of a 'grammar-in-motion' that it provides seems to closely mimic a fully functional

Natural Language Processing (NLP) system”

Astadhyayt (7" BCE) is a composite text including the following modules -

1. Sivasitra or pratyaharasiitra (14) (PS)
sabdanusasana or sitrapatha (3965 or 3983 in kasikavrtti (SP)
dhatupatha (1967 verb roots - 2014 including kandvadi roots) (DP)

> »w D

ganapatha (other pertinent items like primitive nominal bases, avyayas) (GP)

Sitrapatha (SP) is arranged in eight adhyayas (chapters) each divided into four sub-chapters
(padas). The SP has approximately 3965 rules (sitras) which have been arranged in x.x.x format

(to be accessed in as adhyaya . pada . sitra format)>’

The following is a summary of topics discussed in the Astadhyayt' -

Chapter |
= Major definitional and interpretational rules
= Rules dealing with extension (atidesa)

= Rules dealing with atmanepada-parasmaipada
= Rules dealing with the karaka

Chapter I1

= Rules dealing with compounds (samdasa)

* http://www.languageinindia.com/feb2004/panini.html
%% Jha Girish Nath ‘The System of Panini’ Language in India, volume 4:2 February 2004
3! Sharma, Rama Nath, The AstadhyayT of Panini — Volume-I page-75-76

24

= Rules dealing with nominal inflection

= Rules dealing with number and gender of compounds
= Rules dealing with replacements relative to roots

= Rules dealing with delection by /uk

Chapter 11

= Rules dealing with derivational of roots ending in affixes san etc.
= Rules dealing with the derivational of ending in a krt
= Rules dealing with the derivational of ending in a tin

Chapter IV

= Rules dealing with derivation of a pada ending in a sup

= Rules dealing with feminine affixes

= Rules dealing with the derivational of nominal stems ending in an affix termed
taddhita

Chapter V, VI & VII

= Rules dealing with doubling

= Rules dealing with samprasarana

= Rules dealing with the samhita

= Rules dealing with the augment (agama) sut

= Rules dealing with accents

= Rules dealing with phonological operations relatives to a pre-suffix base (arga)
= Rules dealing with operations relative to affixes augment etc.

Chapter VIII
= Rules dealing with doubling (dvitva) relative to a pada
= Rules dealing with accent relative to a pada
= Rules dealing with other phonological relatives to a pada

= Rules dealing with miscellaneous operations relative to a non-pada

Kapoor(1992) has reduced the treatment of subject matter into four divisions®*: Chapters

1-2 dealing with classification and enumeration of bases and categories, Chapters 3-5 consist of

prakrti-pratyaya enumeration, and derivation of bases, Chapters 6-8.1 deal with the synthesis of

prakrti-pratyaya, and Chapters 8.2-8.4 deal with the rules of morphophonemic.

The modules of AD

32 Kapoor, Kapil, “Text Interpretation: The Indian Tradition”

25

Siva siitras or pratyahara siutra (PS)

The purpose of the PS component is to give a list of all Sanskrit phonemes. But rather

than listing just the phonemes, the siitras in the PS component are interspersed by meta-linguistic

markers, called anubandhas. By a well defined method (adirantyena saheta), Panini creates

variables or macros to be used in his grammar. For example, al refers to the list of all phonemes,

ac refers to all vowels, hal to all consonants and 7iam to all nasals. The 14 sutras are-

aiun

rlk

eon

ai au c
hyvrt
In
Amnnnm
jhbhn
ghdhdhs
jbgdds
khphchththecttyv
kpy
Sssr

h1

3T 33 T
% & %1

EITTTT
[/]
FATUTY]
BRI

IR
EEREERR
[MEB3ITTSTTY
[% T T,]

MYHEY

[€ =]

The first 4 satras cover all the vowels and the last 10 sifras include all the consonants.

Again, all vowels and consonants of Sanskrit have been arranged in such a way in these sitras

that they can be referred to without mentioning them separately.

Of the hundreds pratyaharas that could in principle be formed from these sitras, Panini

has used 43 (of a 44™ introduced by later grammarians, rai=(r,[))**. Note that some prtyaharas

33

S‘Uldodld\"t:ﬂﬂ} FREXS JdY JHTHAT: |
YT §3 IS, §Ig & 9 Ruaed: |
FEfoded AT VS, UARRISTr ;|

EIRELE] A IRaeG: 1|

26

are ambiguous. For example, n occurs twice in the list, which means that you can assign two

different meanings to prtyaharas an34 (including or excluding r etc.)
sutrapatha (SP)

The SP contains about 3965 siitras or 3983 in kasika vrtti arranged in chapters (adhyaya)

and sub-chapters (pada) in a particular order™.

Chapter | Pada I Pada I Pada I1I Pada IV Total
Rules
1" 74 73 93 109 349
2" 71 38 73 85 267
3m 150 188 176 117 631
4™ 176 144 166 144 630
5t 135 140 119 160 554
6" 217 198 138 175 728
7% 103 118 119 97 437
g™ 74 108 119 68 369
Total Rules in Astadhyay1 3965

Table 1.1 : Distribution of AD s#tras

sutras are verb-less sentences unlike those in natural language and give an impression of

formula or program like code. They are of following types® —

= Samjiia (Technical Rules): Rules which assign a particular term to a given entity.
» Paribhasa (Interpretive Rules): Rules which regulate proper interpretation of a

given rule or its application.

3 et =y
» Shastri, Bheemsen, Laghusiddaantkaumudi Ist part, page: 5

3 g = uftvmr = fafdfEw =
sftvnsmRy sfEae gayean 1|

27

* Vidhi (Operational Rules): Rules which state a given operation to be performed on a
given input.

= Niyama (Restriction Rules): Rules which restrict the scope of a given rules.

» Atidesa (Extensions Rules): Rules which expand the scope of a given rules, usually
by allowing the transfer of certain properties which were otherwise not available.

* Adhikara (Heading Rules): Rules which introduce a domain of rules sharing a

common topic, operation, input, physical arrangement, etc.
Samjna (introduce classes and technical rules)

Panini’s samjna rules define terms or conventions (or macros) to be used in the grammar.
The object which is assigned a samjna is called a samjni. Panini has used approximately 100

technical terms which can be classified in view of their samjia in three categories

» Sabdasamjiia assigns a samjna to a linguistic term, for example, vrddhi, pratipadika,
dhatu, anga, pada etc.

» arthasamjiia assigns a samjiia to the meaning of linguistic term, for example, /uk,
lopa, Slu, lup etc.

» dharmasamjiia assigns a samjna to the quality (guna) of a sound segment, for

example, adarsana, udatta, anudatta svarita etc.

Paribhasa (Interpretive Rules)

The interpretive rules called paribhasa provide a check on the operational rules so that
they do not suffer from faults such as ativyapti (over application), avyapti (under
application) and asambhava (impossible application). Panini has located about seventy-

five such interpretive rules in different parts of the grammar. For example, adyantau

28

takitau [1.1.47), midaco’ntyadparah [1.1.47], sasthi sthane yoga[l.1.49],

sthane 'ntaratamah [1.1.50], uran raparah [1.1.51], nicca’ [1.1.53] etc.
Vidhi (Operational)

Operation rules provide for a certain operation to be performed. In this sense, the term
vidhi refer to karya (operation, action) vidhi is also used in the sense of the object of an

operation. The derivational mechanism of the Astadhyayi entails the following operation-

» Placement (pratyaya) like pratyayah [3.1.1], parasca [3.1.2], dhatoh [3.1.91] etc.

» Addition (aGgama) like hrasvanadyapo nut [7.1.54], ami sarvanamnah sut [7.1.52] etc

= Replacement (adesa) like akah savarne dirghah [6.1.101], ecoayavayavah [6.1.78],
ikoyanaci [6.1.77], ato’m [7.1.24] etc.

= Modification (vikarana) like kartari sap [3.1.68], divadibhyah syan [3.1.69] etc.

Deletion (lop) like halantyam [1.3.3], lasakvataddhite [1.3.8], upadese janunasik it
[1.3.2] etc.

Niyama (Restriction)
Rules which restrict the scope of a given rule.

Examples: goto nit [7.1.90], striyaiica [7.1.96], trtiyadisu bhdasitapumskam pumvad
galavasya [1.1.74]® etc.

Atidesa (Extensions)

The function of an extension rule is to widen the scope of application of a technical or

operation rule. atidesa is of three types

» samjnatidesa like asamyogallit kit [1.2.5]

= sthanyatideSa like sthanivadadeso 'nalvidhau [1.1.46]

37 etz [2.2.¥ 9], Feais@gue: [2.2.%9], WS T AT [2.2.%R], TSGR [2.2.40], W[W [2.2.u2], fewr
[2.2.43].
S aar forg [9.2.%0], foarsw [9.2.2¢8], Tiafey WAy gag meaed [9.2.9%]

29

» yuktatidesa like lupi yuktavad vyaktivacane [1.2.51]

Adhikara (Heading)

Rules which introduce a domain of rules sharing a common topic, operation, input,

physical arrangement, etc.

Examples: pratyayah [3.1.1], parasca [3.1.2], taddhitah [4.1.76], dhatoh [3.1.91],
sahasupa [2.1.4] etc.

Dhatupatha (1967 verb roots - 2014 including kandvadi roots) (DP).

The dhatupatha is a lexicon of Sanskrit verb roots assumed or explicitly called by the SP

component There are 1967 verb roots, 2014 including kandvadi roots in Panini dhatupatha. It is

organized into ten classes as follows —

Sr. Class Total Modification
roots

1 bhvadi 1035 Sap

2 adadi 71 luk

3 juhotyadi 24 su

4 divadi 141 Syan

5 svadi 34 $nu

6 tudadi 155 Sa

7 rudhadi 25 $nam

8 tanadi 10 u

9 kryadi 62 $na

10 curadi 410 Sap

Total 10 1967 10

Table-1.2 : Distribution of DP

30

ganapatha (GP)

The primitive nominal bases are contained in the GP. The various classes like k7,
taddhita, stri, sup, tin and the 18 upasargas operate on these bases (including 23 pronouns).
The ganapatha is a list of groups of words used by Panini’s Astadhyayl. For example: sarvadi,

ajadi, Saradadi etc.

1.2.1.1 Technical terms of Panini

In addition to anuvrtti and artificial technical terminology including pratyaharas, Panini
employs a device called anubandha. An anubandha is a code-letter which indicates a
grammatical function like elision and reduplication. A major aspect of Panini's technique is the
law of utsarga and apavada that relates exceptions and individual rules. The law of utsarga and
apavada states that an apavada (exception rule) is more powerful than an utsarga (general rule).
Therefore before applying the utsarga one has to check for its apavada. The utsarga thus
occupies the area not occupied by its exceptions. Further, once an utsarga is barred from
entering in to the area of its exception, it can never enter the area again. For example: Panini’s
rule ata ifi [P.4.1.95] (the suffix i7i is added to a noun ending in a in the sense of offspring), is an
exception (apavada) to Panini’s rule tasyapatyam (an) [4.1.92] (the suffix an is added to a noun
in the sense of its offspring). Siddha, asiddha, nitya, anitya, antaranga and bahirarnga are the
important technical term of Panini. When the two rules of equal strength (vipratisedha) conflict,
the one which is subsequent in order, applies. If there is a situation where a single element is
equally qualified for the assignment of more than one term, vipratisedhe param karyam [1.4.2]
will be invoked. It should be remembered here that unless there is a clear conflict, it should not
be invoked. Commentators also explain that this rule cannot be invoked where the conflict
obtains between two rules whose relationship is one of general-exception (utsarga-apavada),
obligatory-nonobligatory (nitya-anitya) or internally conditioned-externally conditioned
(antaranga -bahiranga)™. The concept of adhikara is intended to regulate the meaning of the
rules to follow in the sense that the whole of adhikara rule is to be read with the subsequent

sitras. For example, dhatoh [3.1.91] is an adhikara siitra, which applies till the end of the third

39 Jha Girish Nath “The System of Panini’ Language in india http://www.languageinindia.com/feb2004/panini.html
access on 14th march 2006

Y AR AR eae AT [FE-2.%]]

31

chapter. Anything treated after this rule will get the designation dhatoh. Panini’s samjiia sitra
introduces different classes and abbreviations that are to be called in the sitras — vrddhi, guna,
anundasika, savarna, pratipadika, pada, sarvanamasthana, ghi, ghu, gha, nadi, bha, nistha, ti,
pragrhya, hrasva-dirgha- plut, krtya etc’. samjiia is the most important technical device of

Panini.

1.2.2 Nominal Inflectional Morphology (subanta) of Panini

In a Sanskrit sentence, all non-verb categories are subanta-padas which makes it
essential to analyze these padas before any other computer processing can begin. Sanskrit
subanta forms can be potentially very complex. They can include primary (krdanta) and
secondary (taddhitanta), feminine forms (stripratyayanta) and compound nouns (samasa). They
can also include upasargas and avyayas etc. According to Panini, there are 21 morphological
suffixes (seven vibhaktis and combination of three numbers = 21)* which can attach to the
nominal bases (pratipadika) according to the syntactic category of the base, gender and end
character of the base. Panini has listed the sup suffixes su, au, jas,am, aut Sas, ta, bhyam, bhis,
nie, bhyam, bhyas, nasi, bhyam, bhyas, nas, os, am, ni, os, sup. These suffixes are in the sets of
three as- (su, au, jas) (am, aut, Sas) (ta, bhyam, bhis) (rie, bhyam, bhyas) (riasi, bhyam, bhyas)
(rias, os, am) (iii, os, sup)* for singular, dual and plural* respectively. These suffixes are added
to the pratipadikas® (any meaningful form of a word, which is neither a root nor a suffix) to
obtain inflected forms (subanta padas). pratipadikas are of two types: primitive and derived.
The primitive bases are stored in ganapdatha (collection of bases with similar forms) while the
latter are formed by adding the derivational suffixes. They denote unity, duality and plurality
respectively. Some words are only in the singular always, like ekah(one), some are always dual
like dvi (two), aksi (eyes) etc. and some are always plural like apah (water), darah (wife) etc.

subanta is mainly six types -

gt [2.0.2], IS [2.2.%], TEATHTTA AT [2.2.¢], Toarequde F{aui [2.2,R], Gt ued (],
g TEFE [2.2.%3], refaeamquuey: mifesme [2.2.¥4] Fuafgaaarrs [2.2.%8], Aowafd [2.%.9],
FETEA, [2.2.%0], TAWT 2 [2,2,22], JEATAT 74 [2.%.3], IAWH [2.%.2¢], Tebaq Fer [2.2.28],
AT 2 [2.26%], 2ig Baud wEa [2.2.22], SEersSeE - -t [2.3.20], FEm [3.2.82] o |

? S RS S R S O gae g g

43 qq:)) h

44 m—w

» srefaeTgyey: WU 1212 1% 41|, FAfEaaara 1212 1%

32

1.2.2.1 avyaya subanta (indeclinable NPs)

avyaya subanta-padas remain unchanged under all morphological conditions™.
According to Panini [2.2.82]", affixes cap, tap, dap, (feminine suffixes) and sup are deleted by
luk when they occur after an avyaya. Panini defines avyayas as svaradinipatamavyayam [1.1.36],

krnmejantah [1.1.38], ktva tosun kasunah [1.139] and avyayibhavasca [1.1.40]* etc.

1.2.2.2 Nominal Subanta (base NPs)

Nominal subantas are basic subanta, which are pratipadika by
arthavadadhaturapratyayah pratipadiakam. For example: ramah, Syamah, pustakalayah,

vidyalayah etc.

1.2.2.3 samasanta subanta (compound NPs)

Simple words (padas), whether substantives, adjectives, verbs or indeclinables, when
added with another subanta pada form samasa (compound). Sanskrit samdasas are divided into
four categories, some of which are divided into sub-categories. The four main categories of
compounds are as follows: (1) Adverbial or avyayibhava, (2) Determinative or tatpurusa, (3)
Attributive or bahuvrihi and (4) Copulative or dvandva. dvandva and tatpurusa compounds may

be divided into sub-categories also.

1.2.2.4 krdanta subanta (primary derived NPs)

The primary derivatives are called krdanta. The primary affixes are to be added to verbs
to derive substantives, adjectives or indeclinable krz. For example pathitavyam, patavya,
pathaniya, pacelima, jeyam, deyam, kartta, kumbhakarah, janamejayah, pathakah, pathanti,

gantum, khaditum, svapnam gatih, gatva,vihaya, adaya etc.

“ wevt fiy forgey warg = fawfey |
TNy 9 Gy I AT TEEw | [we arEr

47 e y: [2.%.¢ %]
* wufefuTarera [2.2.38], Fe: [2.2.3¢], F@T-AGA-HGT: [2.2.3R], r@AraEay [2.2.%0]

33

1.2.2.5 taddhitanta subanta (secondary derived NPs)

The secondary derivative affixes are called taddhita, which derive secondary nouns from
pratipadikas. For example - dasarathi, gauna etc. Panini has listed many taddhita suffixes
some of which are- a, akaiic, ac, afi, an, at, isthan, iyasun, kan, dhak, dhaii, tamap, tarap, tayap,
tal, tyap, tral, dvayasac, fak, matup, matrac, yak, yat, yaf, dac, kha, gha, cha, uraca, thak, thari,
than, na, ha, va, vatup etc. For example, daksi, kva, asvakah, visvajaninam, ksatriyah, maliyah,

raivatikah, dandikah, laghutamah, gurutarah, gargyayanah, iha, balavan etc.

1.2.2.6 stripratyayanta subanta (feminine derived NPs)

Sanskrit has eight feminine suffixes tap, cap dap, nis, nin, nip, un and ti etc. and the
words ending in these suffixes are called stripratyayanta For example - aja, gauri, miisika,

indrant, gopi, astadhyayi, kurucari, yuvati, karabhori etc.

34

Chapter- I1

SUBANTA TYPES AND PROCESSES: THEIR
RECOGNITION

35

2.1 Constituents of Sanskrit sentence

A sentence is Sanskrit has subanta padas (NPs) and tirianta padas (VPs). Cordona®

(1988) give his reference as footnote) defines a sentence as -
(N-E")p...(V-E")p

After sup and tin combine with pratipadikas, they are assigned syntactico-semantic

relation by the karaka stipulations to return complete sentences

2.1.1 Subanta and its morphological types

Nominal inflection morphology (subanta) deals with combination of bases (pratipadika
(arthavadadhaturapratyayah pratipadiakam)) with case affixes (sup). The words (padas) thus
formed are called subanta. For example, ramah, syamah, pustakalayah, vidyalayah etc.

subantas are of two types -

2.1.1.1 Primary subanta

The primary derivatives are called krdanta. The krt affixes are also known as primary
affixes. The primary affixes are to be added to verbs. When added to the verbs, the krt can derive
substantives, adjectives and indeclinables. The Sanskrit names for these two types of bases are as
follows: krdanta (a word ending in a krt affix) and taddhitanta (a word ending in a taddhita

affix). krt suffixes are of three kinds according to the Siddhantakaumudi (SK) by Bhattojidiksita-

1. krtya suffixes
krtya suffixes are always used in bhava-vacya and karma-vacya and are in neuter
singular. krtya suffixes are tavyat, tavya, aniyar, kelimar, yat, kyap, nyat etc’’. For example-

pathitavyam, patavya, pathaniya, pacelima, jeyam, deyam, etc.

¥ George Cardona, 1988 Panini, His Work and its Traditions, vol ... i (Delhi: MLBD, 1988)
N THTSHASEA] ol qe |
T T Y Y HA T GeTd 1l

36

2. purvakrdanta suffixes
These suffixes uses in kartrvacya only. These suffixes are nvul, trc, lyu, nini, ac, ka, an,
ta, khas, khac, kvanip, da, kta, ktavatu, satr, Sanac, Sakan, u, kvip, itra, etc. For example kartta,

kumbhakarah, janamejayah, pathakah, pathanti etc.

3. uttarakrdanta suffixes

These suffixes are tumun, ghaii, erac, ap, ktr, athuc, nafi, nan, ktin, khal, yuc, ktva, lyap,
namula, una etc. For example, gantum, khaditum, svapnam, gatih, gatva, vihaya, adaya etc.
Primary derived nouns (by way of krt suffixation) get inflected for case and number by sup

suffixes to become subanta-padas (krdanta subanta-padas).

2.1.1.2 Secondary subanta

Nouns formed by secondary derivation process are called secondary subanta, for

example, taddhitanta, samasanta, stripratyayanta and avyayas.

2.1.1.2.1 taddhitanta subanta

The secondary derivatives are called faddhita. taddhitanta are words ending in taddhita
affixes before getting sup inflections. faddhita affixes derive secondary nouns and change their
meanings in various ways for example - dasarathi, gaun etc. Panini described many taddhita
suffixes. Some suffixes are- a, akaric, ac, afi, an, at, isthan, iyasun, kan, dhak, dhaii, tamap,
tarap, tayap, tal, tyap, tral, dvayasac, fak, matup, matrac, yak, yat, yan, dac, kha, gha, cha,
uraca, thak, thafi, than, na, ha, va, vatup etc. For example - daksi, kva, asvakah, visvajaninam,
ksatriyah, maliyah, raivatikah, dandikah, laghutamah, gurutarah, gargyayanah, iha, balavan

etc. taddhitanta forms inflected with sup are called taddhita-subanta.

2.1.1.2.2 samasanta subanta

Simple words (padas), whether substantives, adjectives, verbs or indeclinable, added with
another subanta-padas are called samdasa (compound). Sanskrit samdasas are divided into four

categories, some of which are in turn divided into sub-categories. The four main categories of

37

compounds are as follows: (1) adverbial or avyayibhava, (2) determinative or tatpurusa, (3)
attributive or bahuvrihi and (4) copulative or dvandva. dvandva and tatpurusa compounds can

further be subdivided into sub-categories.

2.1.1.2.3 stripratyayanta subanta

Sanskrit has eight feminine suffixes tap, cap dap, nis, nin nip, un and ti and words ending
in these suffixes are called stripratyayanta. For example - aja, gauri, musika, indrani, gopi,
astadhyayt, kurucart, yuvati, karabhori etc. stripratyayanta forms inflected with sup are called

stripratyayanta-subanta.

2.1.1.2.4 avyaya subanta

Forms remaining unchanged in all genders, numbers and cases, are called avyaya.’'
avyayas are basically subanta-pada but according to Panini’s rule avyayadap supah [2.2.82]
feminine affixes cap, tap, dap, and sup are deleted by /uk when they occur after an avyaya.
Panini defines avyayas as svaradinipatamavyayam [1.1.36], krnmejantah [1.1.38], ktva tosun

kasunah [1.139] and avyayibhavasca [1.1.407> etc.

2.1.2 tinanta and its morphological types

Sanskrit verb forms are very complex. They carry tense, aspect, number information in
the inflection forms. Sanskrit has about 2000 verb roots classified in 10 morphological and
semantic classes. Further, these can have atmanepadr and parasmaipadi forms in 10 lakara and 3
x 3 person and number combinations. There are 12 secondary suffixes added to verb roots to
create new verb roots”'. Mishra & Jha (2004)°° have done a rough calculation of all potential

verb forms in Sanskrit to be more than 10,29,60,000.

! vt firg Frgy e = Fwfory |
TOY ¥ Ay I A TG 1| [T Sar]
52 ey [R.%.¢7]
* ufefiuareET [2.2.38], FES: [2.2.3¢], FA-TG-HGT: [2.2.3R], @@y [2.2.%0]

> T -~ - TS~ ST s S - faraa -~ forszrgeer |
T fwg fis IR sl wem o

38

2.1.2.1 Primary tinanta

Primary tinanta forms are derived by directly inflecting the verbs with one of the
following 18 suffixes called tinn (tip, tas, jhi, sip, thas, tha, mip, vas, mas, ta, atam, jha, tha,
atham, dhvam, it, vahin, mahin). For example, bhavati, pathati, gacchati, bhramati, kramati,

edhate, dadhate etc.

2.1.2.2 Derived tinanta
There are 12 secondary suffixes (san, kyac kamyac, kvip, kyan, kyas, kvib, nic, yan, yak,
fyan and nin.) which derive new verb roots from existing verb roots. The verb roots thus derived
are divided into four classes -
1. causals or nijantas like corayati, pathayati, gamayati, darsayati etc.,
2. desiderative or sannantas like pipathisati, mumiirsati, jugupsisate, vivrtsati, cikirsati etc,
3. frequentatives or yanantas like lolupyate, sasadyate, caficiiryate, cekriyate, vavrajyate
etc. and
4. denominative or namadhatus - kyac (e.g. puriyati, kaviyati, rajiyati), kyan (e.g.
krsnayate, vidvayate, yaSasyate, apsarayate), kyas (e.g. pataptayate, lohitayati), nin (e.g.

sambhandayate, mundayati), yak (e.g sarpayati, kandiiyati, kelayati).

2.2 subanta formation processes

A pada is defined as suptinantam padam. A subanta-pada (NP) is a combination of nominal
pratipadika - base or derived (formed by krt, taddhita, stri or samasa process) - with one of the
21 sup suffixes depending on case number combinations. After a sup suffix is selected
(depending on case-number combination), the pratipadika-sup structure changes according to the

following information —

= category of the pratipadika (nouns, pronouns, numerals)
= gender of the pratipadika (masculine, feminine, neuter)

» last varna (ending character) of the pratipadika (vowels/consonants)

> Mishra, Sudhir and Jha, Girish Nath, identifying verb inflection in Sanskrit Morphology

39

2.2.1 Vowel ending pratipadika

631"

ending masculine

For nominative singular (1-1), suffix is ‘su’ [P.1.3.2]°°, which is replaced by
‘visarga’ (:). There are five steps in replacing ‘visarga’ (su > s > ru > r > :). For example-
ramah, syamah, sarvah etc (TH:, JITH:, G?fi). Accusative singular (2-1) ‘am’ changes to ‘m’

[6.1.106]°7 blocking dirgha sandhi and generates forms ramam, Syamam etc. For instrumental
singular (3-1), the suffix is ‘f/a@’, which is replaced by ‘in’ [7.1.12]°® then by applying the rule for
guna sandhi [6.1.87]°° which replaces ‘ai’ samhita by ‘e’ (ta>ina>ena>ena) leading to forms
like ramena, Syamena etc. For dative singular (4-1), the suffix is ‘zie (e)’, which changes to
‘aya’ [1.3.8]% thus resulting forms like ramaya, Syamaya etc. For ablative singular (5-1), the
suffix is ‘ziasi’, which is replaced by ‘@’ [7.1.12]°". Then by applying dirgha sandhi rule
[6.1.1011% we get forms like ramat, syamat etc. For genitive singular (6-1), the suffix is “zias’
which is replaced by ‘sya’ [7.1.12]%° to get forms like ramasya, Syamasya etc. For locative
singular (7-1), the suffix is 71> which is replaced by ‘i’ and then by applying rule [6.1.87]%*
get forms like rame. For vocative, ‘he’ is prefixed to visarga less nominative singular to get
forms like ‘he rama (he rama + su[2.3.491* = ‘he rama’ [6.1.69]°%)

For nominative and accusative dual, suffixes are au and aut. They change to au
[P.1.3.2]%". Then the sandhi rule®® applies. The resulting forms are like ramau, syamau, balakau,

bharatau etc. For instrumental, dative and ablative dual (3-2/4-2/5-2), the suffix is bhyam, the

40

last character of base changes to ‘@’ by the rule [7.3.102]%

and there is no change in suffix. For
example: ramabhyam, bharatabhyam, syamabhyam etc. For genitive and locative dual (6-2/7-2),
the suffix is ‘os” which changes to ‘oh’ and the last character of base changes to ‘e’ by the
rule[7.3.104]° and applies sandhi rule [6.1.78]’". The resulting forms are like ramayoh,
syamayoh, bharatayoh etc. The vocative dual (8-2) forms are like nominative dual with prefix
‘he’ like ‘he ramau’.

For nominative plural (1-3), the suffix is ‘jas’. It converts to ‘as’ and by applying
sandhi rule [1.3.7, 6.1.101]7* generates ramah, Syamah, bharatah. For accusative plural (2-3),
the suffix is ‘Sas” >‘as’ by the rule 1.3.8”> which changes to ‘an’[6.1.103]*. Then by applying
sandhi rule [6.1.101]"° we get forms like raman, syaman, bharatan etc. For instrumental plural
(3-3), the suffix is ‘bhis’ = ‘ais’. The forms are like ramaih, Syamaih, bharataih etc. by
applying “vrddhi sandhi’ [6.1.88]7°. For dative and ablative plural (4-3/5-3), the suffix is ‘bhyas’
which changes the last ‘a’ of the base to ‘e’ by the rule 7.3.103”". For example: ramebhyah,
syamebhyah, bharatebhyah etc. For genitive plural (6-3), suffix is ‘@m’ and gets an augment
‘nut’ by the rule 7.1.54™ which changes to ‘n’[1.3.3]” and combines with ‘Gm’ before changing
the last character of the base to ‘@’ by the rule 6.4.3%. n -1 conversion takes place by the rule
8.4.2%'. For example - ramanam, bharatanam, syamanam etc. For the locative plural (7-3), the
suffix is ‘sup 2su’. The final last character of the ‘a’ ending base is converted to ‘e’ by the rule
7.3.103%. The suffix ‘su’ changes to ‘su’ by 8.3.59*. For example- ramesu, Syamesu, bharatesu

etc.

41

There are some differences between ‘a’ ending masculine pronouns and nouns in
some cases. Sanskrit has 35 pronouns according to Panini’s rule of ‘sarvanama’ [1.1.27]%.
Except in the case of [(1-3), (4-1), (5-1), (6-3) and (7-1)], all the forms of ‘a’ ending masculine
pronouns are same as that of ‘e’ ending masculine nouns. So we will describe here in the short
only ‘sarva’ (S) which is representative of the class ‘@’ ending masculine pronouns generated

following process:

1-3 : S+jas > S+S1>S+1->sarve [7.1.17/1.3.8/6.1.871%
4-1 : S+ e > S+ smai [7.1.14]*® > sarvasmai
5-1 : S +fiasi > S + smat [7.1.15]%” > sarvasmat
6-3 : S+am—> S+sut+am—> S+s+am > S+ sam >
sarve + sam > sarve + sam > sarvesam [7.1.52/1.3.3/7.3.103/8.3.59]*
7-1 : S+ni > S+ smin [7.1.15]* > sarvasmin

‘37" ending neuter

Except nominative, accusative and vocative forms [(1-1), (1-2), (1-3), (2-1), (2-2),

(2-3), (8-1), (8-2) and (8-3)] all the forms of ‘@’ ending neuter nouns are same as that of ‘a’

ending masculine nouns. So we take ‘jiiana’ (J) ‘a’ ending neuter noun:

1-1 : J+su-> J+am - jianam [7.1.24/6.1.103]%°
1-2 : J+au> J+§ > J+1- jaane [7.1.19/1.3.8/ 6.1.84]""
1-3 : J+jas2J+8§i2J+i2J+num+i->
J+n+i-> jaanani [7.1.20/1.3.8/ 7.1.72/1.3.3/6.4.8]
2-1 : J+ am - jiianam [6.1.103]"
8 Fatdfy gdamf
% s ¥ft / ereraEdfed / sng TOn:
8 gaameT: T

Y ST e - et

5 onflt T YT / Teld / gaEd STedd / SISV T

% Sy e - et

% srrsy / FEATOsEr T g

! 3ftg T: / AVIEEATSY / U gauEr:

? S v O/ cviaantEn/ TERE S / gy / S e aEt
 Feresar 7 gy

42

2-2 : J+aut > J+§ > J+1- jiane [7.1.19/1.3.8/6.1.84]"
2-3 : J+jas D> J+§>T+i>J+num+i[7.1.20/1.3.8/7.1.72]" >
J+n+1i-> jianani [1.3.3/6.4.8]°°

‘3 ending masculine

This is smaller class comparatively other classes the processing of ‘visvapa’ (V) is

representative of this class:

2-3 : V + $as > vi§vapa + as [6.4.140/1.1.52/]"" = visvapah

3-1 : V +ta > visvap +a[6.4.140/1.1.52/1.3.7]°® = visvapa

3-3 : V + bhis = vi§vapabhih

4-1 : V + ne > visvapa + e [6.4.140/1.1.52/1.3.8]" > viavape
5-1 : V + nasi > vi§vap + as [6.4.140/1.1.52/1.3.8]'" = visvapah
6-1 : V + nas = vi§vap + as [6.4.140/1.1.52/1.3.8]""! > vi§vapah
6-2/7-2 V + 0s = vi§vap + oh [6.4.140/1.1.52/1.3.8]'” = visvapoh
6-3 : V +am - vi§vap + am [6.4.140/1.1.52]'" = vi§vapam

7-1 : V +ni > visvap +1i[6.4.140/1.1.52/1.3.8]'™* > visvapi

Except these forms, all other forms are like ‘@’ ending masculine noun bases. If a
non ‘bha’ base does not end in a root (for example ‘viSvapa’) then its forms will be like ‘ha’ as
follows -

2-3 : H + $as > H + an [6.1.103]'% > hahan
3-1 : H+ta—> H+a-> haha[1.3.8/6.1.101]'"

* FvaTfET / AgETeT / UE: g
** wreEdtad / 9 v B/ Tgeee e
% gt / TR STE S

7 et emar:, TSI

%8 T e, TSR, T

9 Y erar:, SIS, AT
100 ayrat errelY:, arelysveaey, SyTaaTen
101 ayrat errelY:, arelysveaed, STyTaaafen
102 ayrat errelY:, arelysveaed, SyTadaTEn
103 Srreft emt:, st

104 ayratr erreY:, arelysveaey, SyTaaTEn
105 aﬁw

ot o

43

4-1 : H +fie > H + e > hahai [1.3.8/6.1.88]'®

5-1 : H + nasi > H + as © hahah[1.3.8/1.3.2/6.1.101]'"

6-1 : H+nas > H + as [1.3.8]''° > hahah [1.3.8/6.1.101]""
6-2/7-2 H + os & H + oh [6.1.88]"'* & hahauh

7-1 : H+ni > H+1i- hahe [1.3.8/6.1.87]'"

‘3" ending feminine:

The ‘@ ending feminine form is a very large class. The declension process of this class is

represented by ‘rama’ (R) as follows-

1-1 : R +su > R [6.1.88]'""" > rama

1-22-2 R +au/aut > R +$1 > R +1 - rame [7.1.18/1.3.8/6.1.87]'"*
1-32-3 R + jas/Sas > R +as - ramah [6.1.101]"

2-1 : R +am - ramam [6.1.68]"""

3-1 : R+1ta> R+4a- rame + 3 - ramaya [1.3.7/7.3.105/6.1.78]""®
3-2/4-2/5-2 : R+ bhyam - ramabhyam

3-3 : R + bhis = ramabhih

4-1 : R+ne > R+e - ramaya +e - ramayai [1.3.8/7.3.113/6.1.88]'"
4-3/5-3 R + bhyas = ramabhyah

5-1/6-1 R + nasi/nas > R+ as > ramayah [6.1.68]"%

6-2/7-2 R + 0s > rame+ os > ramayoh [7.3.105/6.1.78]"

107 STt / 31 waur €

18 Sryreraafae / gfesdfer

' FrorEAtET / TS SAE 3 / 3 waut g

10 Sroreraafa

M STt / o1ah: qaur <

1123:%i.%

' SroraataT / 3ng o

114@%

' sitg e / AvTEEAfET / 3g o

16 31 waut e

T el -gre gt ey 7
" gz / anfE =/ wErEEE:
19 Srorerafage / arsa: / gfsdfer
0 gtz e giieas oo

44

6-3
7-1
7-3
8-1
8-3/8-2

R +aam = R+ naam - ramaaNaam [7.1.54/8.4.2]'%

R + ni © ramaya+ am > ramayam [7.3.113/7.3.116/6.1.68]'%
R + sup = R+ su=> ramasu

he R + su > he rame [6.1.69]'**

like 1-2 and 1-3

Except in the cases of [(4-1), (5-1), (6-1), (6-3) and (7-1)], all the forms of ‘@’

ending feminine pronouns are same as that of ‘@’ ending feminine nouns. ‘sarva’ (S) which is

representative of the class ‘@’ ending feminine pronouns has forms generated according to the

following process:

4-1

5-1/6-1
6-3
7-1

S + e = sarva + e = sarvasya + e = sarvasyai
[1.3.8/7.3.114/6.1.88]'%

S + nasi/nas - sarvasya + as = sarvasyah [7.3.114/1.3.8/6.1.88]"%
S+am - S+s+am[7.8.52]'*" © sarvasam

S + ni - sarvasya + am - sarvasyam [7.3.114/7.3.116/6.1.88]"**

Other forms are like ‘rama’.

‘®” and 3 ending masculine

‘> and ‘u’ ending masculine are derived in the same way because they both are ‘ghi’'*’. The

processing of ‘hari’ (H) is as follows-

1-1: H+su
1-2/2-2

- harih
H + au/aut - hari [6.1.102]"°

121 3fg =g / wersgaraT:

122

153 greTg: / FA TETE: / T -gaTeRl et giieys e

124

12 Syraafad / wdAE: WegE@y / g

12 gdareT: WrggEay / AvEEdtsd / gt

127 snft g g2

12w wggEay /SN AEr: / gieit

1% gty

45

1-3/2-3

3-1
3-2/4-2/5-2
3-3

4-1

4-3/5-3
5-1/6-1
6-2/7-2

6-3

7-1
7-3
8-1
8-2/8-3

H + jas/Sas > H + as > harayah [6.1.78]""
H+ta > H+ na-> harina [7.3.119/8.4.2]'*

H + bhyam - haribhyam
H + bhis - haribhih
H + fie > hare + e > harayaye [7.3.111/6.1.78]'*
H + bhyas - haribhyah
H + nasi/nas = hare + as = hareh [7.3.111/6.1.97]"*
H + os > haryoh [6.1.74]'%
H +am = hari + n + am - harT + nam - harinam
[7.1.54/6.4.3/8.4.2]"°
H + i > hara + au = harau [7.3.118/6.1.85]"’
H + sup > hari +su [8.3.59]"*® > harisu
he H + su > he hare + s [7.3.108]"*° & he hareh
forms are like 1-2/1-3.

‘®” and 3 ending feminine:

“The feminine words ending in ‘i, ‘u’ are optionally termed ‘nadi’ if a case affix with an
indicatory ‘ria’ follows. Such case affixes are ‘rie’ (4-1), nasi (5-1), nas (6-1) and ri (7-1). The

remaining forms will be declined like their masculine counterparts™'*’-

2-3 : mati + $as > mati + as > matih [1.3.8/6.1.102]""!

130 gormar: gawaf:

131 @m:

"2 s W/ sEgEgEaTAy

1 AR / warsgamE:

SRR/ s o

135 Qa?: qjtl'{'ﬂi':

PO g Tt 92 / R/ segarsgran s
P73 / srfiEea

15 sy e

139 Fexs-c=t “‘IUT:

1% Tha, Girish Nath, M.Phil. dissertation “Morphology of Sanskrit Case Affixes A computational Analysis”

page-31.
1! SroTeremfaT / gormaT: gaHaut:

46

3-1 : mati + td > mati + 3 > matya [1.3.8/6.1.77]'%

4-1 : mati + ne 2mati + ¢ 2 mati +a+ e = mati + ei >
matyai [1.3.8/7.3.112/6.1.87/6.1.74]'*
5-1 : mati + nasi >mati + as = mati + a + as = mati + es >
mateh [1.3.8/7.3.112/6.1.87/6.1.74]"*
6-1 : mati + nas mati + as = mati + a + as 2 mati +es 2>
mateh [1.3.8/7.3.112/6.1.87/6.1.74]'*
7-1 : mati + ni 2mati +1 - mati + am - mati + a + am - mati + es 2>

matyam [1.3.8/7.3.117/7.3.112/6.1.87/6.1.74]"

‘®” and 3° ending neuter

€ ¢ 2

i’, ‘u’ ending feminine ‘vari’ and ‘sulu’ are representative of this class.

The forms for generic base ‘vari’(V) follow-

1-12-1 V + su/am = vari [7.1.23]"
1-2/2-2 V +av/aut 2 vari+§i> vari+1> vari+n+1->
varini [7.1.19/1.3.8/7.1.73/8.4.2]'*
1-3/2-3 V +jas/§as > V +§i > vari +n+1i-> varini [7.1.20/7.1.73/8.4.2]'*
3-1 : V+ta > V+na - varina [7.3.119/8.4.2]"°
3-2/4-2/5-2 .V +bhyam - varibhyam
3-3 : V + bhis > varibhih
4-1 : V + e > vari +n + e > varine [7.1.73/8.4.2]""
4-3/5-3 V + bhyas - varibhyah
2 T / SR

' Syt / SUET: / g T/ U g

' Syt / SUET: / g T/ U g

43 SroradfT / SUET: / Sg T / UEh: gEuEr

14 SToTeRATET / SEEwTH / SUET: / 3 T / Udh: YU
147m

' JqEEHE / vt / RIS Rt / degrErera s
149 St wr: O / gt Rt / sregwregras

0 31 9/ segTaTErEAa s

Pl gaistyr et / W

47

5-1/6-1 V + nasi = vari +n + as & varinah [7.1.73/8.4.2]'

6-2/7-2 V + 0s = vari +n + os > varinoh [7.1.73/8.4.2]">
6-3 : V +am = vari +n + am - vari + am 2>

varinam [7.1.73/6.4.3/8.4.2]">*
7-1 : V +ni > vari +n+1i-> varini [7.1.73/8.4.2]'%
7-3 : V + sup 2 vari +su [8.3.59]"°° > varisu
8-1/8-2/8-3 : forms are like 1-2/1-3/1-3.

Some notable exceptions to this pattern are ‘sakthi’, ‘asthi’ and ‘dadhi’"’,

“:f’, ‘&’ ending masculine:

In this class, some general rules apply and sup are added with base- (1-1) — 4, (1-2/2-2) — au, (1-
3) —ah, 2-1) —m [6.1.105], (2-3) — n, (3-1) — e, (3-2/4-2/5-2) - bhyam, (3-3) - bhih, (4-1) - ah,
(4-3/5-3) - bhyah, (5-1/6-1) - ah, (6-2/7-2) - os, (6-3) - am, (7-1) - i, (7-3) — “su’. Some notable
exceptions are - ‘vatprami’ is derived by ‘kvip’ and not ‘kit’ then 2-1, 2-3 and 7-1 will be derived

differently'>®.

‘é:’, ‘%’ ending feminine:

‘T, ‘i’ ending feminine ‘gaur?’ and ‘khalapii’ are representative of this class.
1-1 : gaur + su > gauri [6.1.66]"°

1-2/2-2 gauri + au/aut = gauryau [6.1.74]"

1-3 : gauri + jas > gauri + a + as > gauryah [7.3.112/6.1.74]''
2-1 : gaur + am - gaurim [6.1.103]"%

132 prsfr fawrent / fa

13 gy favept / sregETeraR s

Y garst vt /W / segaErggEaRst
P gt faweht / segETeTrEar s

136 ader yegaar:

7 gifterefiraaegenmager: [7.1.35]

138 Srogete [6.%.¢2]

1% ao—garewt <t gitwgs B

190 1 g

19! syuE: / U g

48

2-3 : gauri + §as > gaurih [6.1.102]'%

3-1 : gauri + ta~> gauri + a > gaurya [1.3.8/6.1.74]'%

3-2/4-2/5-2 . gauri + bhyam -> gauribhyam

3-3 : gaur + bhis = gauribhih

4-1 : gaurl + fie > gauri + e > gaurye [1.3.8/6.1.74]'%

4-3/5-3 gauri + bhyas = gauribhyah

5-1/6-1 gaur + nasi = gauri + as > gauri +a +as 2>
gaurayah [1.3.8/7.3.112/6.1.74]'%°

6-2/7-2 gauri + os > gauryoh [6.1.74]"

6-3 : gauri + am = gauri +n + am = gauri + am =

gaurinam [7.1.73/6.4.3/8.4.2]"%

7-1 : gauri +ni 2 gauri+a+ni 2> gauwi+a+am >
gauryam [7.3.112/7.3.116/6.1.74]"®

7-3 : gauri + sup > gaur +su [8.3.59]'7° > gaurisu

“k’, ‘& and “©¢’ ending

The declension of ‘7’ ending stems is comparatively limited being almost entirely composed of

3

derivative nouns formed with the suffix ‘#7’ but it also includes nouns like ‘devr’, ‘nr’,
‘savyasthr’. The inflection of these stems is quite analogous with those ending in ‘i’ and ‘u’ and
its peculiarity consists mainly in the treatment of the stem itself which has a double form, fuller

in strong cases and briefer in weak cases

12 Toreodr 7 gy

163 gormay: gefganf:

' SrorFadteT / TH: g

19 SroTaEAfET / TE: qauEr

19 FroTeraAfsT / SUAET: / U gduEr
17w geuEr:

R-CINERER CaWE | EWAC e ae G R I DR
19 suET: / O AR / T gauE
70 T g

" w.D. Whitney Sanskrit Grammar” pp-137

49

For ‘r’ ending ‘dhatr’ special rules 7.3.110/7.1.94/6.1.11/8.2.24/ will apply for the generating
process and remaining forms will be processed by general rules. However, ‘nr’ is different in 8-1
where it is ‘he nah’. The word ‘pitr’ will be according to ‘dhatr’ and only different in (1-2/2-2)
‘pitr’ by the rule 7.3.110.

‘r’ ending feminine ‘svsr’, ‘nanadr’, ‘dhuhitr’, ‘yatr’, etc. are declined by general rule and apply

rule 6.4.11 and the word ‘matr’ is like ‘pitr’ but only 2-3 is different ‘matrh’ (not matrn).

Only nominative and accusative ‘r’ ending neuter forms are different from masculine. These
forms are declined like ‘dhatr > and remaining forms will be declined like ‘7’ ending masculine

forms.

‘i’ ending forms are derived by general addition of suffixes and sandhi rules for example - ‘kr’,

‘kraw’, ‘karah’ etc.

The words ‘gamlr’, ‘sakr’ etc. are ‘Ir’ ending. These are declined as ‘gama’, sak’ 1-1 by the
rule: 7.1.94'72. The forms are ‘gamlu, gamalah (1-2,1-3) by 7.3.110'". For 2-3 ‘gamlrn’ and for
5-1/6-1 forms are ‘gamul’/ ‘Sakul’ by rules 6.1.111 / 1.1.51'*. The remaining forms are by

general rules.

LU ‘3, ‘Q” and ‘3 ending
‘e’ ending forms are found in masculine only. They are derived by general addition of sandhi
rules, for example ‘se’, ‘sayau’, ‘sayah’ etc. For ‘ai’ ending masculine and feminine stems the
‘ai’ is substituted by ‘a’[7.2.85]'"° . The remaining forms are derived by simple sandhi rules.

For neuter ‘e’, ‘ai’, ‘0’, ‘au’ (ec) ending stems, the ‘ik’ would be substituted by

rule 1.148'7°. Therefore ‘atirai’, ‘pradyaw’become ‘atiri’, ‘pradyu’ etc. and derived like i’

ending.

72 FgyH -gEE e @

173 st fo—gdareearar:

174

ELUNCIE
7S i #fer

50

The ‘o’ ending stems will go through ‘vrddhi’[7.1.90/7.2.155]"" for strong case
endings. Therefore ‘gauh’, ‘gavaw’, ‘gavah’, ‘he gauh’, (1-1, 1-2, 1-3, 8-1) and ‘gam’, ‘gah’ etc.
(2-1, 2-3) is derived by rule 6.1.91'"® and remaining forms are derived by ordinary sandhi

179
rules.

2.2.2 Consonant ending

Consonant ending bases show related patterns of derivation as far as the forms of
the case endings are concerned. Some forms are generated by some changes in the bases while
other changes take place in the suffixes.

The ‘A’ ending masculine forms are derived by some changes in the base in
nominative singular (1-1), instrumental plural (3-3) and instrumental, dative and ablative duals

(3-2/4-2/5-2). We take ‘lih> which is representative of this class-

1-1 : lih + su = lih > lit/lid [6.1.68/8.2.31/8.2.39/8.4.55]"%
1-2/2-2 lih + aw/aut > lihu

1-3/2-3/5-1/6-1 lih + jas/Sas/nasi/mas = lih + as = lihah [1.3.8]""'

2-1 : lih + am = liham

3-1 : lih +ta > lih +a - liha

3-2/4-2/5-2 . lih + bhyam - litbhyam/lidbhyam [8.2.31/8.2.39/8.4.55]"™
3-3 : lih + bhis > litbhih/lidbhih [8.2.31/8.2.39/8.4.55]"'%

4-1 : lih + ne = lihe

4-3/5-3 lih + bhyas > litbhyah/lidbhyah [8.2.31/8.2.39/8.4.55]'*
6-2/7-2 lih + os = lihoh

V76 T grgwETeer

77 3t for / ety

78 sharseore:

17 Jha, Girish Nath, M.Phil. dissertation “Morphology of Sanskrit Case Affixes A computational Analysis”
page-36.

¥ g-garedr <t ey B / 2le: / T wanmE v / @i T
181 Sryreraafsa

182 Az / oo oty / @R =

183 2 / g W / @R T

82 / g sy / @R T

51

6-3 : lih + am = liham

7-1 : lih + fii = lihi

7-3 : lih + sup = litsw/lidsu [8.2.31/8.2.39/8.4.55]'%

8-1 : he lih + su > he lit/ he lihd [8.2.31/8.2.39/8.4.55]"%
8-2/8-3 : like 1-2 and 1-3.

Some exceptions are there in following cases (1-1/3-3/3-2/4-2/5-2/4-3/5-3). The
last character of ‘duh’ changes to ‘k’/‘g’ and remaining forms are like ‘/ih’. Word ‘visvah’
changes to ‘#/‘d’ ending and applies ‘samprasarana’®’ rule for generating other forms.

The ‘A’ ending feminine forms are generated like ‘4’ ending masculine but
nominative singular ‘A4’ is changed to ‘¢’ or ‘d’- upanat/upanad (1-1), instrumental plural-
upanadbhih/upanatbhih (3-3), instrumental, dative and ablative duals-
upanadbhyam/upanatbhyam (3-2/4-2/5-2) and dative and ablative plural-
upanadbhyah/upanatbhyah (4-3/5-3) by the rule 8.2.34'% Some exceptions are also notable -
‘h’> ending word ‘usnih’ changes to ‘k’/’g’ in (1-1/3-3/3-2/4-2/5-2/4-3/5-3).

The ‘A’ ending neuter bases ‘svanduh’ are derived like masculine but
there are some differences in nominative and accusative cases - ‘4’ changes to ‘¢/’d’ in
I-1 and 2-1, for the nominative and accusative, the dual suffix is ‘au’/‘aut’ which

[t

changes to ‘7" by rule 7.1.19". For nominative and accusative plural, suffix ‘jas /‘Sas’

190, I.ule

changes to ‘si” and gets two augment ‘@m’ and ‘num’ and applies ‘yana sandhi

and vowel sandhi rule for generating ‘svanadvamhi’. Four rules apply in this process
[7.1.20/41/7.1.98/7.1.72/6.1.77/8.3.24]""

For ‘v’ ending masculine ‘sudiv’ 1-1, the suffix is ‘su’ which changea to ‘aut’ by

rule 7.1.84'°% and applies sandhi rule for generating ‘sudyau’ and in the 3-2/4-2/5-2/3-3/4-3/5-3

cases, the last vowel of ‘sudiv’ is converted to ‘u’. The applies the ‘yana’ sandhi'® rule to

2 / et S / @R

$02re: / eSS / @R

187 gy

188—.1-%} e

189W

19()@“1%

Ol gy B / SqEgERe: / AYHRE Ford: / S AU / Teuee gifer
192ﬁa-3ﬁﬁ:

1933@"&”@

52

generate ‘sudyubhyam/ sudyubhih/sudyubhyah etc. All ‘v’ ending feminine and neuter forms are
declined like masculine.

The last character of ‘m’ ending masculine base changes to ‘n’ by the rule
8.2.64"" in (1-1/3-3/3-2/4-2/5-2/4-3/5-3) and generates ‘prasan’/ prasanbhyam / prasanbhih /
prasanbhyh etc. All remaining forms are like ‘/ih’. ‘m’ ending masculine and feminine pronoun
‘kim> declines like ‘sarva’, and ‘sarva’. ‘ka’ replaces ‘kim’ in all the cases and generates
‘kah/ka, kau/ke, ke/kah etc. like ‘sarva/sarva’. Some exceptions are there which are derived by
special rules like ‘idam’. ‘m’ ending neuter pronoun ‘kim’ declines like ‘sarva’. Only ‘ka’
replaces ‘kim’ in some cases except (1-1/2-1) and generates ‘kim, ke, kani’ etc. like ‘sarva’.

For ‘n’ / ‘n’ ending stems ‘rajan’, the penultimate vowel will get length by
6.4.8', and ‘n’ and ‘su’ will be deleted by 8.2.7 and 6.1.68"°. As a result we have raja (1-1)

197
4

from ‘rajan’. The penultimate ‘@’ is deleted in 2-3/5-1/6-1 by the rule 6.4.134""’, and forms like

‘rajiiah’, rajiia (3-1), rajiie (4-1), rajiioh (6-2/7-2), rajiiam (6-3) and rajiii (7-1) are obtained. For
‘bhyam’, ‘n’> will be deleted by 8.2.2"® (except in (7-1) and (8-1)). For ‘yajvan’ and ‘brahman’
, the ‘a’ of ‘an’ is not deleted in 2-3, 3-1, 4-1, 5-1, 6-1, 6-2, 7-1, 7-2 by the rule 6.4.137'°. For
‘vrtrahan’, 2-3 and 3-1 will be ‘vrtraghnah’ and ‘vrtraghna’ by the rule 6.4.134/7.3.54/8.4.22°%.
In the same way, ‘Sarngin’, ‘yasasvin’ etc. can be obtained. The process of ‘maghvan’ is done
by rule 6.4.128/7.1.70/6.4.14/6.1.68/6.4.133/6.1.108/6.1.87°°". For the ‘divan’ or that ending in
‘van’, will be like ‘rajan’, but accusative plural (2-3) will be ‘divana’. For ‘svan’ the forms are
‘Sunah’ (2-3), ‘suna’ (3-1) , ‘Svabhyam’ etc. ‘yuvan’ will be derived by 6.1.37°%%. ‘@’ is

substituted for the final of ‘pathin’, ‘mathin’ and ‘rbhuksin’ before ‘su’ by 7.1.95°" and ‘@’

204 205
6 .

comes for ‘i’ by 7.1.867" in strong cases

194'Fﬂ' :ﬁ- W:

195 g T T

1% 3 @ wiuReTe / g -gaer durq giegs 5
197 aretiai:

8 it gu-E-Har-gity i

199 3 garmrge=aTT

20 Sredrar: / 7Y BRfeulEy / B

201 ar Aot / 3fEeT TS / ST e/ T - gy S YRy g /9-49-
At / TGRS / 31

202 3 FIEROT GEERTY

203 e I \

204 =qrsq eAHE

295 Jha, Girish Nath, M.Phil. dissertation “Morphology of Sanskrit Case Affixes A computational Analysis”

53

For ‘7’ ending base ‘catur’ , the forms are found only in plural because this is a

plural numeral. Derivation process is as follows -

1-3/2-3 catur + jas = catu + a + r + jas = catur + ah = caturah
[7.1.98/1.3.71%%¢

3-3 : catur + bhis = caturbhih

4-3/5-3 catur + bhyas = caturbhyah

6-3 : catur + am = catur + nam >

caturnam/caturnnam [7.1.55/8.4.1/8.4.451*"
7-3 : catur + sup —> catursu
‘dh’ ending stems are derived by general rules. ‘s’ (palatal) and ‘s’ (cerebral)
ending bases are derived by following changes:
§ > k[8.2.62] > §[8.2.36] > d [7.2.39] > k [8.4.56]"
Thus for “vis” 1-1 will be ‘vit/vid’. For ‘nas’ 1-1 will be ‘nak/nag/nat/nad’ (four optional forms).
‘s” ending stems (like ‘pipathis’) will undergo following changes in 1-1-

pipathis + su = pipathir > pipathih [6.1.68/8.2.66/8.2.76]*"

For ‘adas’, the following processing will take place:

1-1 : adas + su > ad + au > as +au > asu [7.2.107/7.2.106]*"°
1-2 : adas + au > ad + au > adau > ama [7.2.102/6.1.96/6.1.102]*"
1-3 : adas + jas > ad + §T1 > ad + 1> ami [7.1.17/6.1.87/8.2.81]*"
2-1 : adas + am - adam - amum [8.2.80]*"

page-41.

0 TEgEEN: / 2

27 yreqwfy / WA A O qEEEE /S @ ¥

208 T F / TH- T -GA-A- A -TA- T -TF -9 §: / ATl hIa=aatear Sefaur / arsaam
20 e —garenr i GRwys & / Faaw & / ateusmr &

210 3y off gelloy / qe: G2 Wiedwar

! AT/ SRS, / g gaeauta:

212 s ¥f / 3mg AT / U 3 wgaE

213 mﬂﬂ?{g &

54

When ‘adas’ is changed to ‘amu’ it gets the ‘ghi’’*’ designation. Thus, in 3-1

‘amuna’ 3-2/4-2/5-2 ‘amibhyam’, 3-3 ‘amibhih’, 4-3/5-3 ‘amibhyah, 6-2/7-2 ‘amuyoh, 6-3

‘amisam’. ‘d’ ending words ‘asmad’ and ‘yusmad’ are similar and derived by following process:

1-2

1-2/2-2

1-3

2-1

2-3

3-1

3-2/4-2/5-2

3-3
4-1

4-3
5-1
5-3

asmad + su = asmad + am = ah + ad + am - ahad + am = aham
[7.1.28/7.2.94/6.1.97/7.2.90]*
asmad + au/aut = asmad + am = ava+ad +am - avad + am > avaa+a+
am - avam [7.1.28/7.2.92/7.2.88/6.1.101]*'°
asmad + jas = asmad + am - vaya + ad + am = vayad + am = vayam
[7.1.28/7.2.93/6.1.97/7.2.901*"
asmad + am - ma + ad + am - mad + am - ma + a + am 2 mam
[7.2.97/6.1.97/7.2.87/6.1.101]*"
asmad + §as = asmad + am = asmad + nas = asma + a + am —> asmanas 2>
asman [7.2.97/7.1.29/7.2.87/6.1.1011*"
asmad +ta > ma+ad+a—> mad+a-> may+a > maya
[7.2.97/6.1.97/7.2.89T*%

asmad + bhyam -> ava + ad + bhyam - avad + bhyam - avabhyam
[7.2.92/6.1.97/7.2.86]*
asmad + bhis > asma + bhis © asmabhih [7.2.86/6.1.101]**
asmad + ne = asmad + am = mahyad + am = mahyam
[7.1.28/7.2.95/7.2.87/7.2.90]*%
asmad + bhyas > asmabhyam [7.1/30/7.2.87/6.1.971***
asmad + nasi > asmad + at > ma ad + at > asmat [7.1.32/7.2.93/7.2.90]**°
asmad + bhyas > asmad + at © asmat[7.1.31/7.2.90]**°

2 grarerafE

28 % oA / et |/ Saner / 9y e

210 % gorg / gardt Rawe / gerETy e W / 3R gat
2 F gorgdiy / ga At AR / SO / 9 W

28 7 qrashae / SN / R = / ot gaut
2 AshaE / wrEr 7/ fidranar = / s gant
20 WrRae / A / A

2! gt fBare / STANOr / SRS

22 JEEEHERY / 3 Fauf &

2 % g / TR-wa 3/ v / 9y @
2 gy e/ facftarar = / st

2 uHTIE ¥ / g9 94 | / 9 A

55

6-1 : asmad + nas = mama + ad + nas = mamad + a = mama

[7.2.96/7.1.27/7.2.901**

6-2/7-3 asmad + os > aava + ad + os > aavad + os > aavayoH
[7.2.92/6.1.97/7.2.891*

6-3 : asmad + aam - asmad + akam - asmakam [7.1.33/7.2.90]*%

7-1 : asmad + ni > ma +ad + i > mad + i > mayi [7.2.97/6.1.97/7.2.891*°

7-3 : asmad + sup > asmasu [7.2.86]231

2.3. Subanta recognition mechanism

First of all, the system checks for punctuations. Then the avyayas and the verbs are
recognized. After the recognition of these padas, the system recognizes all remaining words as

subanta and sends for the analysis process.

2.3.1 Recognition of punctuations and non-subanta words

System will recognize punctuations and tag them with PUNCT. If the input has any
extraneous characters, then the input word will be cleaned from these elements (normalized) so

that only Devanagari Sanskrit input text is sent to the analyzer. For example - T/ &"% @#¥;,

@, - = D T, qAH:

2.3.2 avyaya recognition

Sanskrit sentence must have a tinanta-pada and can have one or more subanta-padas

(including avyayas). We have stored around 524 avyayas in the following format-

Avyaya id avyaya
1 Sl
2 SEXSInE

226W3‘ﬁ:/ﬁﬁ.m:

Y qa-wHt S / JEHCEAGE SHISY / I @
228 Faret e / s / A
229mm/ﬁﬁ.m:

20w Aramae / S| / st

! e

>

56

3 AHUS
4 T
5 T
6 3y

7 AT
8 ITHH
9 SEsre)
10 3

11 yq

12 ELiC)
13 3

14 3T

15 gty

Table-2.1: Avyaya recognition

If an input word is found in the avyaya database, it is labeled * AV, and not sent to the subanta

analyzer for further processing.

2.3.3 Verb (tinanta) recognition

Sanskrit verb forms are very complex they carry tense, aspect, number information all in
the inflection forms. Sanskrit has about 2000 verb roots classified in 10 morphological and
semantic classes. Further, these can have atmanepadr and parasmaipadi forms in 10 lakara and 3
x 3 persons and numbers combinations and can also be potentially. There are 12 secondary
suffixes, which are added to verb roots and create new verb roots. Mishra & Jha (2004) have
done a rough calculation of all potential verb forms in Sanskrit to be more than 10,29,60,000.
Since storing all these verb forms would have been difficult, we have stored 500 commonly used
verb roots and their forms. Thus we have around 90,000 verb forms stored in unicode. A

sample listing follows —

dhatu_ id dhatu lat_pra_eka lat pra_dvi lat_pra_bahu

57

1 =8 wafd EEGE afr

2 T T T TE

3 wef el e el
4 ey TTEre e ey

5 ey arere e e
6 EIRy rerd e e
7 Yy e e e

8 Y TET T GRE

9 e T T
" o= = o =

Table-1: verb forms

If an input is found in the verb database, it is labeled ©° VERB’ and not sent to the analyzer for

further processing

2.3.4 Subanta recognition

Thus the subanta-padas in Sanskrit text are identified by a process of exclusion. After the

verbs and avyayas are identified by their lexical pattern matching search, the remaining padas in

the text are labeled subanta-padas.

58

Chapter-111

SUBANTA ANALYSIS

59

3.1 Vowel ending pratipadika

Vowel ending pratipadikas follow the general pattern mostly. However, there is some

variation if we move across gender and categories of the pratipadikas as seen below -

3.1.1 Nominative singular/dual/plural

System will recognize the vibhakti marker as the end character of padas. :’ is found
in nominative singular (1-1) for example, TH:, JITH:, Hﬂti, HIq: Uah:. The system will isolate
‘2’ and search for analysis in the sup database.

In case of nominative and accusative dual (1-2/2-2), pratipadika forms will be P
ending. System will recognize “T. For example, T, vaTHt, g, @ The system will isolate
“t> and search for analysis by matching in the sup database.

In case of nominative plural (1-3), the pratipadika forms will be “T:> ending. For
example, THT:, JIMHT:, HIAT: ThT:. The system will isolate “T:” and search for analysis by

matching in the sup database.

All vowel ending nominative singular/dual/plural paterns have been displayed in the

folllwing able -

Karaka- | Bases Subanta | Change | Examples Exceptions

Vibhakti | ending | ending in | in Base /special cases
in (if any)

1-1 AT | T, g, Tdl:;, | neuter gender 37
3, %, 3t qr:, Gy, ending

ToAT:

1-1 ;M K, | T T T, ofar, fug fasgar

1-1 T T: - T

1-2 3 ki TH

60

1-2 3m T T T, fearsyar
1-2 T T T 28, wdt
1-2 El I T =

1-2 Kl - - |

1-2 0 at z CEN

1-2 Eq T " o, emant
1-2 3 Tt T et

1-2 T Tt) T

1-2 3t Tar T ATt

1-3 I, M (T T T T Tarfe mr-ad
1-3 E TI: T T

1-3 g T/ T U/
1-3 3 T4 : RIECE

1-3 & q: - ma

1-3 Ed T . Tar:

1-3 3 9 T ma:

1-3 T T3 N T

1-3 31t T T CICR

Table 3.1 : Nominative analysis pattern

3.1.1.1 Special cases/exceptions
Some exceptions are found in nominative plural pronouns for example, sarva. System
analyzes this type of subanta forms with the help of example, base. In this database, many

subanta forms are stored with analysis, which can not be handled through general rules.

61

Subanta Analysis

ESC Td + T THT agaed

Table 3.2 : Nominative vowel ending exception analysis pattern

3.1.2 Accusative singular/dual/plural
In case of accusative singular (2-1), pratipadika forms will be “H’ ending. For
example, THH, FITHH, HITH UHH In this case, it will check the last character search for analysis

by matching in the sup database.

In case of accusative case plural (2-3), pratipadika forms will be “T{” ending. For
example, THIF, I, WA In this case, it will check the last character and search for analysis

by matching in the sup database.

All vowel ending accusative singular/dual/plural patterns have been displayed in following table-

Karaka - | Bases Subanta | Change in | Examples Exceptions
Vibhakti | ending in | ending | Base (if /special cases
in any)
2-1 EEE AR T, R,
33 T, 9T,
Qo
21 Em e ™ . TR
21 LSS T
2-1 st T T T
2-2 3 3 s [T
» 3-) E}
% T T
3, 3

62

2-2 M T T ey
2-2 B T T el
2-2 £l It T qat
22 3 - - T8
2-2 = at - zar
2-2 Eq aLy " ST
2-2 3 Tat T Uik
2-2 T Tt T
2-2 3T Tar T ToATa
2-3 37 ™ THH
2-3 3T T TT T
2-3 T ™ T EALC|
I A U O i
2-3 3 Kt - W
2-3 - K| K\ TEq
2-3 ES = = SIGE}
2-3 £} T T :
2-3 T T N 7
2-3 3t T T LSICE

Table-3.3 : Accusative vowel ending analysis pattern

3.1.2.1 Special cases/exceptions

For %’ ending feminine bases, we have created special paradigms in this format -

63

2-3 T : T
2-3 g .) T

Table-3.4 : Accusative exceptional analysis pattern

3.1.3 Instrumental singular/ plural and instrumental dative & ablative dual
In case of instrumental singular (3-1), pratipadika forms will be g/ ending.

For example,: THTT, ATHA, GEoEl m In this case, it strats checking from last character of the

subanta forms and search for analysis by matching in the sup database.
In case of instrumental, dative and ablative dual (3-2/4-2/5-2), the pratipadika forms

will be “THRIM” ending. System will isolate “T¥ITH” and search for analysis by matching in the sup

database.

In case of instrumental plural (3-3), the pratipadika forms will be o ending. For
example, [, A, o, WA The system will isolate “*> and search for analysis by matching

in the sup database.

All vowel ending instrumental singular/dual/plural patterns have been displayed in the

following table-
Karaka- | Bases Subanta Change in Examples Exceptions
Vibhakti | ending in ending in Base (if /special
any) cases
3-1 3T VA T
3-1 3T ar WA
3-1 S /AT gham
3-1 T a1 T T
3-1 3 um/-r RIRuI¥
3-1 £ El - gal

64

3-1 £ /T j &SI
3-1 3 Tar T Tar
3-1 T T N T
3-1 31t Tar T LS
3-2 AT TR TATH,
T
3-2 WM T, 53, | W
EE
3T
3-3 3 ¥ T T
3-3 ams s 3 | T AT
:;r %, o, T R
3-3 T RIGE - Tfer:

Table-3.5 : Instrumental vowel ending analysis pattern

3.1.4 Dative singular and dative & ablative plural
In dative singular (4-1), pratipadika forms will be “Td” ending. For example, THIY,
MG, 9. In this case, it will isolate “TI’ and search for analysis by matching in the sup

database.

In dative and ablative plural (4-3/5-3), the pratipadika forms will be * o ending.
For example, Tl'ﬁ"QTI, P?ITQ"QTI, ﬁ"QTI, TR, In this case, isolate ° “&:* and search for analysis

by matching in the sup database.

65

All vowel ending dative singular/dual/plural patterns have been displayed in the

following table -
Karaka- | Bases Subanta Change in Examples Exceptions
Vibhakti | ending in ending in Base (if /special
any) cases
41 T T T Faife Mor-
qdet
4-1 3 T WE
4-1 T il i e
4-1 T T T T
4-1 3 aE - LECH
4-1 2) : g
4-1 Ed ETAY N CIE]
4-1 A ™ ¥ T
4-1 T A - ™
4-1 3 T T TS
4-2 T T T,
TR

42 WM T, 53, | W

=, %, 3T,

3t
4-3 3T SR T T
4-3 Ms 3 |9 TR B,

=, %, 3T,

. Rk

66

Table-3.6 : Dative analysis pattern

3.1.4.1 Special cases/exceptions
Some exceptions are found in dative singular pronouns, for example, sarva. System

analyzes this type of forms with the help of example, base as shown below -

Subanta Analysis

I qd + ¥ 9gdf weaea

Table-3.7 Dat exceptional vowel ending analysis pattern

3.1.5 Ablative singular/dual/plural
In ablative singular (5-1), the pratipadika forms will be “Tq / T ending. For

example, THI, FIMTE, WA, In this case, it will isolate “T{ / T and search for analysis by

matching in the sup database.

All vowel ending ablative singular/dual/plural patterns have been displayed in the

following table-

Karaka- | Bases Subanta Change in | Examples Exceptions

Vibhakti | ending in ending in Base (if /special
any) cases

5-1 3T T THI / TAIE | e Tor-

o

5-1 3T EIE T

5-1 T > ‘F L

5-1 T T T

5-1 3 T N RIE

67

5-1 EJ q: - ga&:

5-1 Eq o - BIGR

5-1 33‘ T T m:

5-1 T ™ N T

5-1 3? T + TS

5-2 A T T,
TR

5-2 WML | W

I
5-3 3T o T T
5-3 M T T3 |\ e B,

Table 3.8 : Ablative vowel ending analysis pattern

3.1.5.1 Special cases/exceptions

Some exceptions are found in ablative singular pronouns, for example,, sarva. System

analyzes such forms with the help of example, base as shown below -

Subanta Analysis

AT T + S T Thaw

\

Table 3.9 : Ablative exception analysis pattern

3.1.6 Genitive singular/dual/plural

68

In case of genitive singular (6-1), pratipadika forms will be ‘&I’ ending. For

example, THHE, TIMHE, 9, "I .In this case, it will isolate ‘&I and search for analysis by

matching in the sup database.

In case of genitive and locative dual (6-2/7-2), the pratipadika form will be g
ending. For example, TI'lTéﬁ'I, wmfr:, T-Rfri, TEAT:. In this case, it will isolate “qr:> and search

for analysis by matching in the sup database.

In case of genitive plural (6-3), the pratipadika forms will be “T4TH / TUMH” ending.
For example, THIUTH, YITHIATH, HIATH. In this case, it will isolate “T4TH / TUTH’ and search for

analysis by matching in the sup database.

All vowel ending genitive singular/dual/plural patterns have been displayed in the

following table-
Karaka- Bases Subanta Change in | Examples | Exceptions
Vibhakti ending in | ending in Base (if /special
any) cases
6-1 37 g THE
6-1 3 aqr: THET:
6-1 ES = + ELE
6-1 £l T Y o
6-1 Ej T: N T
6-1 7 q: - &
6-1 ER o N &
6-1 31 T: T e
6-1 T T N :
6-1 3t Ta: T LSICE
6-2 3 3 T, | A THAT:,

69

g AT
6-2 3 ar: - A
6-2 = ar: - Tar:
6-2 * /A - OIELR
6-2 3 Tar: T 4T
6-2 T T N T[4
6-2 31t Tar: T T
6-3 T TOTH/ T THTOTH
6-3 3m /AT T
6-3 B o/ | T ERUIRY
6-3 K BIE) T T
6-3 S IS VACIE G TE0TH
6-3) _O|TF[- @TFI\'
6-3 ® S/ AR D RIERULN
6-3 BN Ta T 3aTH
6-3 T T N T
6-3 3t TaTq T TATATH

Table-3.10 : Genetive vowel ending analysis pattern

3.1.7 Locative singular/dual/plural

In case of locative singular (7-1), pratipadika forms will be & ending. For example,

TW, vIW, WA, In this case it will isolate © and search for analysis by matching in the sup

database.

70

In case of locative plural (7-3), pratipadika forms will be ‘\"E[’ ending. For example,
mig, WTﬁ'g, 94'@'3’ In this case, it will isolate ‘\'ﬂ" and search for analysis by matching in the sup

database.

All vowel ending locative singular/dual/plural patern have been displayed in the following table

Karaka- | Bases Subanta Change in | Examples Exceptions

Vibhakti | ending in ending in Base (if /special
any) cases

7-1 37 - T EUES e -

wfer

7-1 3 a THATH,

7-1 E T T 0

7-1 g Bl T Rl

7-1 3 T s T

N T - e

7-1 ES TR) e

7-1 3t T T Tfa

7-1 T T = T

7-1 3 T T e

7-2 3 3M, T, T | A AT, v

7-2 3 ar: N A

7-2 D ar: - Zar

7-2 x T/ - BIEIR

7-2 3t Ta: T Tar:

7-2 T T N RpIE

71

7-2 3t Tar: T TTar:
7-3 ;T T T T THY
% T, 3,
3f
7-3 3 g g

Table-3.11 Locative vowel ending analysis pattern

3.1.7.1 Special cases/exceptions

Some exceptions are found in locative singular pronouns, for example, sarva. System

analyzes such forms with the help of example, base as shown below-

Subanta

Analysis

ESCIE=:Cy

\

Td + & gudt tmaed

3.1.8 Vocative singular/dual/plural

Table-3.12 : Locative vowel ending exception analysis pattern

Nothing interesting happens in the vocative. Only T gets prefixed (with space) to the

nominative forms. However, the visarga is omitted, as shown in the following table —

Karaka- | Bases Subanta Change in | Examples Exceptions

Vibhakti | ending in ending in Base (if /special
any) cases

8-1 *T T T IW, T =, |7 and all

72

=, o Tud, T feminie ‘g’
I, & ending
T, T I
8-1 37, T T T fersgar
ofdl,
8-1 T T: * TT
8-2 ;3T T |T T I
3, S W, T,
T, 3, of
8-2 3 T T W, A
8-2 T T T z 2l T A
8-2 g @t F T T
8-2 3 z N T 9
8-2 = Tt - T T
8-2 % AL : T fuad, @
SiGiny
8-2 3T A T & et
8-2 T Rt > T
8-2 ot Tat T = et
8-3 o1, 3, T: T T T, 7
JHT:
8-3 E AeE T T
83 H T/ T T o/ T
ot
8-3 3 AcE - ERRIECE

o

73

8-3 = T - T e
8-3 *® Rie - ERCIGIES
8-3 3 a: T FRIICH
8-3 T T4 > T T
8-3 3t T T T T

Table-3.13 : Vocative vowel ending analysis pattern

3.2 Consonant ending pratipadika

Consonant ending pratipadika forms are generated with modifications in the base and

suffixes. Details are given below -

3.2.1 Nominative singular/dual/plural

System will recognize the vibhakti marker as the end character of padas. €* / g / &’ /
/< / g are found in nominative singular. So system will search for > / g* / & / M /
‘" / ‘T as the final portion of the given subanta-padas and replace it with ‘g”. For example, -
ferg®, forg, g, 3. In this case, the system read these padas, then search for T / g /

‘%’ / MU/ O/ T and replaces it with ‘g’ as shown below -

ferg : o + § [TuH e |
fere : forg + g (v Twhaad]
CEEE : 3FSE + g [THT Thaw]
CEED) : 3FSE + G [THT Thaw]

In case of nominative and accusative dual (1-2/2-2), pratipadika forms will be ‘€ ending.
For example,: for&!. In this case, system will replace it with ‘g’ on the place on 2" and add the

analysis according to program with the help of sup database.

74

In case of nominative and accusative plural and ablative and genitive singular (1-3/2-
3/5-1/6-3), the pratipadika forms will be ‘@:” ending it will be replace by ¥ and give all
information with the help of sup database, which is necessary. For example, fofz:

All consonant ending nominative singular/dual/plural patterns have been displayed in the

following table-
Karaka- | Bases Subanta Change in | Examples Exceptions
Vibhakti | ending in | ending in Base (if /special
any) cases
-l LREA\T/TEFM T fere/ferg/ /9
1-1 T 3t g
R T b FAT
R T 7 A
L g m T
1-1 T T T RS
EEEE g 1 kT
R 3 T qug
-1 I 3 q Sifm) sty
R A g = urg
I-1 q T q HET
-1 q i q fam
1-2 T ar T ot
2\ at q qfear
1-2 T «r T A
1-2 T |t q TITH
1-2 ey uft e Tt

75

qurat

Tfrererert

.
.
o

8

:
Hure:
o

_.Q\

b

—HFI\

_._U\

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

1-3

76

1-3 g ICEGSE

Table-3.14 : Nominative consonant ending analysis pattern

3.2.2 Accusative singular/dual/plural

In case of accusative singular (2-1), the pratipadika forms will be ‘7’ ending ending. It

will be replaced by ‘§” and give other information with the help of sup database. The sup da

tabase as shown below —

Karaka- | Bases Subanta Change in Examples Exceptions

Vibhakti | ending in ending in Base (if /special
any) cases

21 7 & 7 fere

21 T aH T RIS

2-1 q oy q HHTH

2-1 " ki) " LY

2-1 o bkt R RRLEY

2-1 1 Ty 1 ALY

2-1 q aq q LR

21 k! T k! HieTe

2-1 q Bl < qureH

21 o o o EUREREN

2-1 q | q qre=y

2-1 T T 1 HET-q

2-1 X Ak X Y

2-1 ¥ Rk ¥ femrem

71

EEEEREE e C R ElErREEE S lEpEE
hee |07 |7 |B |B |k |5 B (v |5 P |k b BB |k | (BB ||
ﬁﬁﬁﬁﬁﬁaﬁﬁﬁﬁﬁﬁﬁ\mamwmmwmma
hee |07 |7 |B |B |k |5 B | |5 P |k b BB |k | | BB || BT
(@\| (@\| (@\] (@\| (@\] (@\] (@\| (@\] (@\] (@\| (@\] (@\| (@\| (@\] (@\| on on on on on on on on on
N N & & & & & & & & & & & & & & & & & & & |[& |& |&

78

2-3 o or: o rfwer:
2-3 = = = LISON
2-3 T q T e

2-3 T L T TEY:
2-3 kil n kil R
2-3 | ¥ q fagw:

Table-3.15 : Accusative consonant ending analysis pattern

3.2.3 Instrumental singular/dual/plural

In case of instrumental singular (3-1), the pratipadika forms will be ‘@ ending It
will be replaced by ‘%" and give all information with the help of sup database.

In case of instrumental, dative and ablative dual (3-2/4-2/5-2), pratipadika forms
will be SHEM, THRMW’, R, TR’ ending. System will isolate SHM’, TR, TR,
TR’ and search for analysis by matching in the sup database.

In case of instrumental plural (3-3), pratipadika forms will be ‘fgw:/fZw:/fw:/faw:
ending. System will isolate “fw:/fZw:/ff¥:/f@9:” and search for analysis by matching in the sup

database.

All consonant ending istrumental singular/dual/plural patterns have been displayed in the

following table-

Karaka- | Bases | Subanta ending in | Change | Examples Exceptions
Vibhakti | ending in Base /special
in (if any) cases
3-1 g il T forer
3-1 q ar El gfar
3-1 St o St HAAT

79

fager

\ \/\3 \

\

\

1S TH /TS HTH

o

\

ferrgw:/ferfew: /g

]

g

\

\

\

ST/ / TR/

\

\

IR ACA: ALK AT K

b

I b
5 5 B

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-2

3-2

3-2

3-2

3-2

3-2

3-3

3-3

3-3

3-3

80

3-3 T far T RSIEE
33 T | i e
kil

Table-3.16 : Instrumental consonant ending analysis pattern

3.2.4 Dative singular/dual/plural
In case of dative singular (4-1), the pratipadika forms will be ‘& ending. System will
isolate ‘&> and search for analysis by matching in the sup database.

In case of dative and ablative plural (4-3/5-3), the pratipadika forms will be
/T /T /A ending. System will isolate “S¥:/ZRI:/TH:/F: and search for analysis
by matching in the sup database.

All consonant ending dative singular/dual/plural patterns have been displayed in the

following table-
Karaka- | Bases | Subanta ending in | Change | Examples Exceptions
Vibhakti | ending in Base /special
in (if any) cases
4-1 T T T fore
s Sk q qfed
4-1 T o T wT
4-1 T T 7 LN
41 T o b GRL
4-1 T e Sk Tl
4-1) & g Ter
4-1 e X T st
4-1 T % 3 qure

/T

\

-l

Ww .o

d\

W\ ’ d e V .o .o .o

mm 9 9 9
& |F |k b7 |B | | ke £ B |B” |k |5 hee |7 B |B” || &7

_ =

; :

~

: 4
w B e e & [F b W W W W . m §F R B |E mm

ke > ke~ b

5 |F |k | |B | | he £ |k |B |k | 5 B |[B (B |B |k |55 B
i A bl Al Al Al B N K\ B Ko I o B A AR E oI AR AR e
<t <t <t <t <t <t <t <t <t <t <t <t <t <t <t <t <t <t

Table-3.17 : Dative consonant ending analysis pattern
82

3.2.5 Ablative singular/dual/plural

Ablative singular patterns have been done according to nominative plural, dual,

instrumental dual and plural and dative plural.

The consonant ending nominative singular/dual/plural patterns have been displayed in the

following table -
Karaka- | Bases | Subanta ending in | Change | Examples Exceptions
Vibhakti | ending in Base /special
in (if any) cases
5-1 S 7 B ore:
5-1 q : q gfea:
5-1 o o o YR
5-1 Hq . Hq I
5-1 s o o g
5-1 T B T e
5-1 &g & g qE:
5-1 S T S| EACSE
5-1 T ¥ T qgug:
5-1 o o o Srfrerer
5-1 E =) PISCK
5-1 T . T Hgd:
5-1 ¥ . ¥ TEN:
5-1 4| m: N a9
5-1 | LR q fagw:
5-2 g ERSIRVERS L VEKS L VA Y ferg s/ fers v/ gy

83

N\

5-2 T HITH o hHTHRITH
32 " Lk q RT3
5-2 U]: \ U]\- > \
32 1 il 1 TS
5-2 vV ﬂ:’ N \ a\- AN \

RO

Al
5-2 T, G/ T [F: | | fergva:/foreva: /g
5-2 T E T ERE
5-2 q B q ERICSE
5-2 el TR 0 SRS
5-2 T =) T T
5-2 vV a:’ a\-w 8{ 5 N

2%

q

Table-3.18 : Ablative consonant ending analysis pattern

3.2.6 Genitive singular/dual/plural
In case of genitive and locative dual (6-2/7-2), the pratipadika forms will be ‘&’

ending. System will isolate &T:” and search for analysis by matching in the sup database.
In case of genitive plural (6-3), the pratipadika forms will be @’ ending. System

will isolate ‘2T and search for analysis by matching in the sup database.

The consonant ending genitive singular/dual/plural patterns have been displayed in the

following table-

84

Karaka- | Bases Subanta Change in | Examples Exceptions

Vibhakti | ending in ending in Base (if /special
any) cases

6-1 z ES fore:

6-1 q T q gfea:

6-1 T o o HHA:

6-1 T H: H J9omH:

6-1 T . o g

6-1 T Bl T T

6-1 gq & g qY:

6-1 St il Sl i<t

6-1 T GH = gug:

6-1 o o o 3frer

6-1 El = El IO N

6-1 q q: T Hed:

6-1 v LR ¥ TN

6-1 By I B qrger:

6-1 | T ES fagw:

6-2 T 2 T forer:

6-2 q ar: E gfar:

6-2 | I T HAAT:

6-2 T r: q T

6-2 T e Ly gTor:

6-2 T +r S AT

6-2 g & g T4

rfrmer:

g™

fagam

5

Q-\

—Ul\

—.ﬂ\

Fl\

W\

b

_du\

e

—HFI\

W\

n—vlauu\

-

g.\

—Ul\

W\

q\

_.Q\

_Nuu\

W\

_d.\

e

q\

W\

gl\

o~

q\

_.Q\

U-\

6-2

6-2

6-2

6-2

6-2

6-2

6-2

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

6-3

Table-3.19 : Genitive consonant ending analysis pattern
86

3.2.7 Locative singular/dual/plural

In case of locative singular (7-1), the pratipadika forms will be @ ending. System
will isolate &” and search for analysis by matching in the sup database.

In case of locative plural (7-3), the pratipadika forms will be /&’ ending.

System will isolate “/&]” and search for analysis by matching in the sup database.

The consonant ending locative singular/dual/plural patterns have been displayed in the

table-
Karaka- | Bases Subanta Change in | Examples Exceptions
Vibhakti | ending in ending in Base (if /special
any) cases
7-1 S & B 17
71 T f q qfefa
7-1 q o q gonfa
7-1 u for R o
7-1 T f/fr /5 T/l
7-1 7 g g o
7-1 S\ & S| EiEIE]
71 3 R 3 gt
7-1 o for o yfHfer
7-1 Bl = | Tifea
7-1 T T T Ted
7-1 L I g TENT:
7-1 Kl for Kl LE
7-1 B R q gt

87

rfreer:

.
.
o'

/g8

o NN D

\(- /

N OO

ENIESS VAR BS |

D NN

W_.l\

5

b

—.Q\

E-\

K

Wﬁ\

5

—.—.I\

—.G\\

/g

exception

g

_..ﬁo

b

<"

_u—.l\

st

b

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-2

7-3

7-3

7-3

7-3

7-3

7-3

7-3

7-3

7-3

7-3

88

7-3 El TE//Y | T TS/ 81/
7-3 T q T LESS)
7-3 bl & bl Tey
7-3 g g | faseg

Table-3.20 : Locative consonant ending analysis pattern

3.2.8 Vocative singular/dual/plural
The consonant ending nominative singular/dual/plural patterns have been done according

to the nominative in the following table-

Karaka- | Bases Subanta Change in | Examples Exceptions
Vibhakti | ending in | ending in | Base (if /special
any) cases
81 RN | TEEM T &
w fere/ o8 /4 /
8-1 q It T g
81 ﬁ ﬁ i & FAA
R T " & T
-1 | il o T g
8-1 T T T & Tl
-1 7 7 q T
8-1 3 3 3 & qure
8-1 & 3 & ®
fra/ rfrye
8-1 = & = TS

89

T 3Tftwer

FEF EEE R E e EEEEE e EE e EEERE &
e he phe fhe fhe lhe fhe phe fhe fhe e e e he fhe phe bhe fhe phe fhe fhe fhe e
e |B |k |7 | BB [k |5 B | | 8P (ke | |BOR ke [| RO|BET | |
w\w\ﬁﬁﬁﬁﬁﬁﬁﬁaﬁﬁﬁﬁﬁ\mamwmm_mw
e |B (ke |7 | BB |k |5 B | | 8P (ke | | (ke [| R|BT | |
I A D D A D A D AN A AN A A\ A\ A A I R A At AN At A Rt A
o (0 ([0 ([0 (O (0 |0 O |0 |0 | | | | v | v v v v (o (o [(o |

90

8-3 S < B & st
8-3 T T T T gure:
8-3 o or: o T SffTmer:
8-3 &l Bt E\ 2 TS
8-3 T T T T HET
8-3 g T g T Ty
8-3 I B T ¥ g
8-3 q = q = fagr=a:

Table-3.21 : Vocative consonant ending analysis pattern

3.3 Complicated subantas and ambiguity handling

Some subanta forms which are very process intensive and involve a lot of string
processing have been handled with the help of example base. We have stored complicated
subanta forms with analysis in the example base. Our database of subanta exceptions is in the

following format-

Id | Subanta Analysis

1| 3reH/3E Y + G [TUAT Thaod]

2 | mamyemar 3T + 3M1/3MT [orerwr/fEeftar fGa=m]

3 |9gH/ad E + T [T qga]

4 | wr/H IS + I [Beftar wemas]

5 | s AT + I [t sga=]

6 |war AT + T [qdIaT Tehaa]

7| STETRIH/ @R | G + W [qetar/agedt/aeet
[EERE)

91

8 | sremrer: 3T + O [qtar sga=]

9 | RN/ | g + & [Fqd sgae]

10 | werw/wer T + T [Tt whae]

1-1 | /g Y + W [Tl qgaE]
1-2 |wq A + ST [UsuHl ThawH]
1-3 | Wy A + o (Sl Teha=]

14 | sy I + I [wEl/aeTHt B
15 | STEHTEHA/ T | 3TEAG + 37H WSl ggaw]

16 | =@ g + & [t uwaw]

17 | eremg IS + QU [l gga]

18 |4 g + G [T Twae]

19 [qg + 3f/30 [oermr/fRBdar e
20 |7 g + ST [T ggae]

2-1 |/ g + 379 [fEdar Tehe]

22 |4 g + v [frar sgae)

2-3 |99 g + 2T [qdrar Thaw]

24 | arear/aret g + W [qaray/=qedf/aeadt ffae]
25 | T g + 3 [=qd Tha=A]

26 | W g + W [Fgdt/osast agae]
27 | FEAT g + S [UsH TwaEA]

28 | g + 3 [wl/awHt fBae]
29 | oST/ASt g + 3 (98T qgae]

Table-3.22 : Example base database

3.3.1 Ambiguous pratipadika

92

There are two kinds of ambiguity in the pratipadika — those due to end-character in the

base and those due to common POS (Part of Speech)

3.3.1.1 Ambiguity due to end-character
Some pratipadikas ending in a particular character combination can lead to
more than one result as shown below. At this point, the system will report both the possibilities

which will be reduced to one when sentential analysis is done -

forg = forg + g / ooy + g (g tsha=]
fore = fog + g / o + g (v twa=A]
faz = fag + g / v + § (w2 tswa=E]
fag = fag + § / fav[+ G [Tha=]
digeh = TG + ¥ / digg + § [TYH1 Tha]
eI = de9 + § / digg + § [TUH Toha]

3.3.1.2 Morphological ambiguity (categorial - verb/noun)

Many subantas (mostly the Satr pratyayanta in locative singular) can be verbs
as well as nouns. Therefore, they will be picked up as verb and not sent for subanta processing.

For example, TH: can be a subanta (TH: = TH + { TAHT Thdd) as well as a verb (TH: = T

+ ISR 3TH J&N dg). At this point, the verb database excludes such ambiguous cases.

3.3.2 Ambiguous vibhaktis

Same forms are available in the dual of nominative and accusative cases like- T, dual of
instrumental, dative and ablative cases like- THI¥IH, plural of dative and ablative cases like-
TH:, and dual of relative and locative cases like - THAT:. In neutar gender as well, the
nominative and accusative singular forms may be identical as in §&&¥ (1-1 and 2-1). In such

cases, the system will give all possible results as in

T = 3ft/3fe [1.2&2.2]

93

\

Gl
g/
EiVED)

[3.2,4.2&5.2]
[4.3&5.31]
[6.2 & 7.2]
[1.1 &2.1]
[5.1 & 6.1]

3.3.2.1 Always ambiguous vibhaktis (3%/3t, @, =, 3 etc.)

This is a very complicated problem for machine and can not be handled at sub-sentential

level as in the case of subantas. The system will give multiple results in these cases.

THT =
JHTHEH =
T =
THAT: =

3it/sfte
T

ARE|
Ehipsy

\

94

[1.2&2.2]
[3.2,4.2&5.2]
[4.3&5.31]
[6.2 & 7.2]

Chapter-1V

ONLINE SUBANTA RECOGNIZER AND
ANALYZER

95

4.1 Description of SRAS

The present system model uses Java in the web format for the recognition and analysis
(prakrti-pratyaya vibhdga) of subanta-padas from Sanskrit texts according to Pannian and
Siddhanta Kaumudr (SK) formalism. The system accepts words/sentences/ text Devanagari utf-8
input in the text area and gives analyzed output in Devanagari utf-8 format. Recognition of
subanta-padas takes place first according to the process as outlined in chapter-II. The analysis
follows according to the processes as outlined in chapter-III. The recognition process includes
identifying all non-subanta categories first. This is as a by-product of this system get preliminary
POS tagged for punctuations, avyayas and verbs. At this point, the system does not give a
facility for uploading and spooling multiple files, but the next version is going to incorporate this
and many more features. The SRAS has twin goals in the mind — simplification of Sanskrit texts

for self reading and M(A)T.

4.1.1 Architecture of the system

The following model describes the interaction between multi-tiered architecture of the

SRAS

\ T
request response
2 T
Apache-tomcat
2
Java servlet
T
JDBC
2

Database

4.1.1.1 Multi-layered architecture

96

The architecture of the SRAS is multilayered java webserver environment, with front

end, database connectivity and backend.

4.1.1.2 The front-end: online interface

The Graphical User Interface (GUI) of the SRAS, which is seen by users, is its front-end.
It is produced by JSP (Java Server Pages) and HTML components. The main JSP file
rsubanta.jsp allows the user to give input in Devanagari utf-8 format using HTML text area

component. Upon clicking the button labeled ‘= Ug=e Ud Yepia-—ye fawmr & fort g=t foas

&7, it calls the reverse subanta Java object (called RSubanta) for processing the input. The

output as given by the Java objects is displayed to the user in Devanagari utf-8 format.

"S9P gRT Feod Upde 3 Upfd-Ucaa fasmer

B =) 3 I O N 1 8 O o) 2 2 e 0 T) R s e 1 O 2 R £

Faed UndE U9 UGR-UCHT TaimT & B puan OEpd a5, T U1 OEpd g o

[Tepe- W e & TR TRl e] Fun in debug mode [

Figure 4.1

4.1.1.3 The back-end: database / txt files

97

There are two versions of the system; the server based version connects to a MSSQL
Server 2005 RDBMS through JDBC. The rule base, example base and other linguistic resources
are stored as Devanagari utf-8. The PC based portable version, for obvious reasons, can not have
RDBMS support. Therefore, we have our rules and data stored in utf-8 text files as backend. A

design of the reverse subanta database as give below:

dhatuPath
supBanpleBase g dhid
eaxtid detu
eanpe)
aysis rresrirg
supRuleBase Syya
g snd 2
Stp dereder awaa
e
besefrelter dretRoop 9
denrbese famid
ecgtialistid chetvid
tionList fam
g ecgid toe
sudd aspect
exgtin ruber
Figure 4.2

The supRuleBase table has relations with the exceptionList table. Any exception figuring in the
rule base must have a description in the exception list. The table supExampleBase depends on
the exceptionList and must provide analysis for each example figuring in the exceptionList and

marked in the supRuleBase

The dhaturiip object depends on the dhatupath object while the avyaya is a floating object as of
now. These linguistic resources are checked for recognition of subantas, and the rule base-
example base are searched for analysis

Text Files

98

For the standalone version (PC based), the data is stored in the following text files —

= sup EB.txt (the subanta example base data) in the following format

A=A+ TUHT THII; AT =HG+Y TIW UHdo, A =3we+3i gomr f&drar
faare; atmat =3ree+ 3t TormT BT e, aaH =3 e+ T agao, a4 = 3TEHg+STd T
g =316+ 3T fBATaT Ueha=i ;AT =3TEHG+ 310 fadtar Usha=,; sren{=3rere+vre fadar
TEAATHA=TC+2T qAAT UHIod, AT =3HG+WIW qarar, =g, us=wr
BTo, AT =3 e+ W qarar, =qel, Usew fRaedsremi=srere+ e qeEr
TE A HEH = 3G+ Il UohaeHel = 3Tea+3 =qedl Uha; STenes = 3ieHg+ +ad aqeff
T AT IR =G+ RH I TG A=W e+3RT TsaH Toha,; 3= 3He + =
Tl SgauTAH=3HE+SH WSl UHaOdINadn=Ee+Idd e, HwAr
B, TR =3TEHG+3TH §S Thao; AR =3+ W8 Thaa; A =37 +{3
U Thaa, ST = 3G +HU TuH! aga<,

= sup RB.txt (the subanta rule base) in the following format

T=T+Y AT Tohaa; TR =+ R Trar aqefl geodt fBa=e,; Teii=+ % arar aqeff et
flaom,@m=+"m qia 9 Teudr Beemwr=+wn o 9qedt oot
foaoe; W=+ g =gl Tt s w=+wy Oqfl UsuHl Sgaed; TAH=+3m wE
AT T =+31H FST Sga<i; TOTH=+3TH SsI qgao;T0=+31H TSI aga=;aq=-+37 WS
TG A=+ 31T WS Sga<i;UTH=+37T7 T8 Gga=;0=+37H T8 qga=; &=+ T, 8
Taaad; =+ gudt twaw; T=T+g T Uamadd; T+g v Bdfar Baew gummm=qer
qATAT Uahaa; T=+37/3fte oo/ fdtar Bawa; T:=+5% wowr aga=e; Tor=+<7e g fadtar
qg e, =+ o Bdfiar sga=a;q=+3m B twaee;=+3r fBdftar twma== T =+vg
fadfar aga=e; Ur=+21 qaar Twhaad,; A=+ AT Twhdod, :=+0F T qgao, T=+3
Tt TwaeH, W=+ R Igf/usuHl Sgae, T=+310 TsuHl THad; g=+3 TSuHT
THTIT; =+ TS THaa,ar: =+ TSI/Tq@H fBae; ™=+3M §87 Tga=; T =+31q
NSt qgaEd; O =+3M ST a9, TMH=+31H TS dgaed; =+F 9@ Tawaed,; §=+9q
U Fgae; g=+{Y T agaa,

= verb.txt (the verb form database for subanta recognition)

afd, sTaret:, W feet, STy, Aol :, Herel, alT{s, Harar:, HarH :, Herd, HIdTH, Hal=], e, HITH, Hald, T, 7alrd,
AT, STHE, STHATTH, STHA, 3THE , STHITH, 3THIT, STHIH, STHATT, STHATH, HIT, HAATH, T g, a2, e

99

Tforame:, Wiy, wfaareer:, wyiaareer wiaarten, yioare:, afoarar:, wfosafa, afosa:, afosafa, gfasafa v
Tersgrer:, wifersrey, syfersanta, wiarsarer:, Wiersare :, aTe], YA, G 2, AT, TATETH, HATE, JITEH, A

* avyaya.txt (the vyaya database for subanta recognition)

37, (AT, T, ST, STRTUS, AT, 3T, 3T, 3T, SISTH W, Sowell, 374, 3171, 3efta, 37, 37, 372
T, 3TFTTH, 31, TR, ST aRIT:, 31T, 3T, STUT, ST, 3T, 3T, 3T, 3T, 3T, 373k,
T, ST, 3T, ST TTE, FTTCTH, 3T, 37T, STV, AT, ST, TR o, ST, 3, 3E,
3TEE, 3TET, 3TETH, 373, 3AT0T, 31TA:, AT, 3N, SN, 31T, |, e T, 3nfar:, 31w, g e, 31war, et
e 2, 3, 3, 2, 3, 3eor SeT i, 35T, 29,52, 3, 354, 3, 3% -, 34, 3T, 3u,

4.1.1.4 Database connectivity

The database connectivity is done through JDBC driver software downloadable from the
Microsoft site. The JDBC-ODBC bridge driver from Sun Mini system freely downloadable from
Microsoft is not Unicode compliant. Therefore there were problems in accepting Unicode
queries and displaying Unicode results. JDBC Application Programming Interface (API) is the
industry slandered for database independent connectivity for Java and a wide range of database-
SQL databases. JDBC technology allows to use the Java programming language to develop
‘Write once, run anywhere’ capabilities for applications that require access to large scale data.
JDBC works as bridge between Java program and Database. SQL server 2005 and JDBC support
input and output in unicode, so this system accepts unicode devanagri text as well as prints result

. . . 232
in unicode devanagri also®”.

4.1.1.5 The web server
The SRAS runs on Apache Tomcat 4.0 platform. The details for this Java based

webserver follows -

2 http://java.sun.com/products/servlet/

100

4.1.1.5.1 Apache Tomcat 4.0

Apache Tomcat is the servlet container that is used for the Java Servlet and JavaServer
Pages technologies. The Java Servlet and Java Server Pages specifications are developed by Sun
under the Java Community Process. Apache Tomcat is developed in an open and participatory
environment and released under the Apache Software License. Apache Tomcat is intended to be

a collaboration of the best-of-breed developers from around the world**>.

4.1.1.5.2 Java Servlet Technology

Java Servlet technology provides web developers with a simple, consistent mechanism for
extending the functionality of a web server and for accessing existing business systems. A serviet
can almost be thought of as an applet that runs on the server side--without a face. Java servlets
make many web applications possible™”.

4.1.1.5.3 Java Server Pages
Java Server Pages (JSP) technology provides a simplified, fast way to create dynamic

web content. JSP technology enables rapid development of web-based applications that are
server and platform-independent™. It is one of the most sophisticated tools available for high
performance and secures web applications.

4.1.2 Module Description
The process flow of the SRAS is given below -

SANSKRIT TEXT
|

PREPROCESSOR

!

RECOGNIZER
NOMINAL SANDHI RULE

DATABASE

33 http://www.apache.org/
24 http://java.sun.com/products/serviet/
33 http://java.sun.com/products/jsp/

101

} }
LINGUISTIC MORPHOLOGICAL RULE BASE
RESOURCES o ANALYZER -

0 ! 0

SUBANTA DISPLAY SUBANTA RULE
EXAMPLE BASE
I
OUTPUT

Present system has three major components —
e RSubanta
e Preprocessor-Recognizer

e Analyzer

4.1.2.1 RSubanta

This is the main class which tokenizes the input text, gets it preprocessed, gets subantas
marked and then sends the subanta padas to the analyzer for analysis. Finally, this module

displays the results. This object has following methods —

public String processSup(String s)
private String preProcess(String tkn)
private String analyze(String tk)
public String printErr()

The code sample for the processSup() function follows —
public String processSup(String s){
String tkn="";

String ts ="";

102

s = s.trim();

String tmp ="";

if (s.length()>0){

StringTokenizer st = new StringTokenizer(s, " ");

StringTokenizer st2 = null;

while(st.hasMoreTokens()){
tkn = st.nextToken().trim();

preProcess(tkn);
if (tkn.indexOf("SUBANTA")>-1 && tkn.indexOf("PUNCT")>-1){

st2 = new StringTokenizer(tkn, " ");

while(st2.hasMoreTokens()){

tmp = st2.nextToken();
(tmp.indexOf("SUBANTA")>0)

ts = ts +" "+analyze(tmp);
else
+H "_’_tmp;

}

}
else if (tkn.indexOf("SUBANTA")>-1)

ts = tst" "+analyze(tkn);

else ts = ts +" "+tkn;

}

retum "{ "J’_ts—"_" }";

else return "Please enter some Sanskrit text to process";

103

tkn=

if

ts=ts

4.1.2.1.1 Preprocessor / Recognizer
This module first normalizes the input and then checks if there are subanta constituents to
process. If a subanta is found, it is sent to the analyzer for analysis; else it is labeled

appropriately as_ VERB or AVYAYA and reported back as output

4.1.2.1.2 Punctuation checker
This component checks punctuation in input text and tags with specific tag. If any punctuation is

(132

found between two characters without space then it deletes them. And if any punctuation

comes to the left or right of a word without space, then this program adds a space between the

word and the punctuation. For example - TH: HhYIq Iq “ H: &H T=5q”| this component
does as TH: AR Iq [“ PUNCT] & eH =57 [”_PUNCT] [I|_PUNCT] and send for next

process

104

HSIUG GRI Yded Ugeld 3N UPTd-Ucad s

B e e 1 T e e | L N e 1 0 1 e 0 2 O e e 21 e G I

Faed UpAlE T4 USTa-Ucdd faamer & o a3 a9y, a9 01 dEgd UG fWd

ce e L1009 -1RESEET LS SHEET)+]I
L9SE R G g N e mee B e st e el L 1
(", /s Ol=-V09~1RESS6768*s5HE™ () 4111
Cd ™y P G HE== 0o B eis s P e et s e L #I
{}"

[TpT-TEIT Faamw & o Wl Eae o] Funin debug mode []

L IEAYIE]

{ _PUNCT [_FUNCT][_PUNCT] [,_PUNCT] [/_PUNCT] [_PUNCT] [;_PUNCT] [PUNCT] [|_PUNCT] [PUNCT] [=_PUNCT] [PUNCT]
[\ PUNCT] [0 NUMERAL] [NUMERAL] [~ PUNCT] [1_NUMERAL] [@ PUNCT] [¢ PUNCT] [§ PUNCT] [5 NUMERAL] [§ NUMERAL]
[7_NUMERAL] [&_PUNCT] [& PUNCT] [* PUNCT] [%_PUNCT] [§_PUNCT] [#_FUNCT] [&_FUNCT] [*_PUNCT] [_PUNCT] [_PUNCT]
[__PUNCT] [PUNCT] [+ PUNCT] [_PUNCT] [{_PUNCT] [} _PUNCT] [*_PUNCT] [_FUNCT] _PUNCT [_PUNCT] [_FUNCT][_PUNCT]
[/_PUNCT] [_PUNCT] [,_PUNCT] [_PUNCT]_PUNCT [PUNCT] [_PUNCT] [PUNCT] [=_PUNCT] [_PUNCT] [_PUNCT]

[0 NUMERAL] [9 NUMERAL] [~ PUNCT] [I_ NUMERAL] [@ PUNCT][# PUNCT][§_PUNCT] [NUMERAL] [§ NUMERAL]
[7_MUMERAL] [&_PUNCT] [&_PUNCT] [* PUNGT] [%_PUNCT] [§_PUNCT] [#_PUNCT] [&_PUNCT] [* PUNCT] [PUNCT] [_PUNCT]
[__PUNCT] [__PUNCT] [+_PUNCT] [_PUNCT] [{_PUNCT] [}_PUNCT] [*_PUNCT] _PUNCT [_PUNCT][,_PUNCT] [/_PUNCT] [_PUNCT]
[_PUNCT] [PUNCT [[_PUNCT] [=_PUNCT] [_PUNCT] [_PUNCT] [0_NUMERAL] [2_NUMERAL] [PUNCT] [I_NUMERAL)

[@ PUNCT] [¢ PUNCT] [§_PUNCT] [5 NUMERAL] [§ NUMERAL] [7_NUMERAL] [& PUNCT] [& FUNCT] [FUNCT] [% _PUNCT]

[$ PUNCT] [¢ PUNCT] [& PUNCT][* PUNCT] [PUNCT][) PUNCT][_PUNCT][_PUNCT] [+ PUNCT] [PUNCT][{_PUNCT][}
_PUNCT] [*_PUNCT] _PUNCT [_PUNCT][,_PUNCT] [/_PUNCT][_PUNCT] [, _PUNCT] [PUNCT [PUNCT] [=_PUNCT] [-_PUNCT]
[_PUNCT] [0_NUMERAL] [» NUMERAL] [~_PUNCT] [1_NUMERAL] [@ PUNCT] [¢_PUNCT] [§_PUNCT] [5_NUMERAL] [§_NUMERAL]
[7_NUMERAL] [&_PUNCT] [&_PUNCT] [*_PUNCT] [%_PUNCT] [§_PUNCT] [#_FUNCT] [&_PUNCT] [*_PUNCT] [_PUNCT] [_PUNCT]
[PUNCT][_PUNCT] [+ PUNCT] [_PUNGT] [{_PUNCT] [}_PUNCT][*_PUNCT][:_FUNCT] }

Figure 4.3

Code sample

105

public class Preprocessor{
String err ="";
String line="";
StringBuffer avyaya = null;
StringBuffer verbs = null;
public Preprocessor(StringBuffer a, StringBuffer b){
avyaya = a;
verbs = b;
}
private String checkPunct(String tkn){
String punctProper = ",.'O[]{} $#@! %" &*-_+=|\\?2/<>~":;\"\u0964 \u0965";
String punctRoman= "abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ";
String punctNum = "0123456789\u0966 \u0967 \u0968 \u0969 \u096A \u096B \u096C \u096D
\u096E \u096F";
String sub_punct_left = "'([{*"\"";
String sub_punct_right ="")]}!*\";,2.\u0964 \u0965";
boolean av_vCheck = false;
String punct = punctProper + punctRoman + punctNum,;
String ts ="";
charc=""

int idx = -1;

4.1.2.1.3 Non subanta checker

This component checks for avyayas and verbs in the non punctuation word of the input. First

avyayas are checked and tagged, and then the verbs are checked and tagged.

Code snippet
private String checkNS(String tkn, String type){

boolean found = false;
StringTokenizer st = null;
String ts ="";

String av_v="";

106

StringBuffer line = null;
if (type.equals("av"))

line = avyaya;

else
line = verbs;
if (line.indexOf(tkn) > -1){
ts = tkn;
if (type.equals("av"))
ts ="["+ts+" AV]";
else
ts="["+ts +" VERB]";
}
return ts;

4.1.2.1.4 Subanta recognizer

The remaining words are tagged SUBANTA by this component. Sample of this function-

else if (type.equals(''verb')) // all untagged words, which is tagged with subanta by
this
faction.
ts =" "+tkn +""_SUBANTA";
else

ts = tkn; |

4.1.2.2 Subanta Analyzer

After the preprocessing and subanta recognition process, the RSubanta object sends a subanta-
pada to the SupAnalyzer object for obtaining analysis. This component returns analysis of
subanta-padas with the help of database and text files

This object has following methods —

public String analyzeSup(String tkn)

107

private String checkExampleBase(String tkn)
private String checkRuleBase(String tkn)
public String printErr()

SupAnalyzer first checks for solutions in the example base data file or table. If found, it does not
check the rule base. If not found, it proceeds to check the rule base by splitting certain number
of last characters from the subanta-pada. 1t first splits 5, then 4 and likewise up to the last
character. Each time it checks if the base and affix combination it arrives at is valid or not by
checking the affix in the rule base. If found, it assumes the analysis to be correct and reports
back. If invalid, it proceeds to create another combination of base + affix.

Code sample from the checkExampleBase() function —

if (exmpls.indexOf(";"+newTkn)>-1) {

try{
data tkn = exmpls.substring(exmpls.indexOf(";"+newTkn)+1, exmpls.indexOf(";",

exmpls.indexOf(newTkn)));
if (data_tkn.indexOf("=")>0){
ky = data_tkn.substring(0,data_tkn.indexOf("="));
val = data_tkn.substring(data_tkn.indexOf("=")+1, data_tkn.length());
ky = ky.trim();
}
err = err+"ky=""t+ky+"' val = ""+val+"'
";
}
catch (Exception ex){
ky = "not found";
val="not found";

System.out.printin("in EB data_tkn=""+data tkn+"' ky=""+ky+"" val=""+val+"");

}
if (newTkn.equals(ky)) {
ts = newTkn+" ["+val+"] ";
}
else ts = tkn;
}
else

108

ts = checkRuleBase(tkn);

4.2 Test corpora
We have collected 140 files in unicode devanagri for testing this system and another
proposes. Out of which the following 10 have been used in the result analysis (please see

Introduction page-12 for details).

4.3. How it works
On the localhost (CD version), the website can be opened by the URL
http://localhost:8080/subanta/rsubanta.jsp. On the actual server, the URL can be something like

http://www.sanskrit.jnu.ac.in/subanta (the actual site is not live yet due to infrastructural

bottlenecks). The home page of the site looks like —

"aht.tp:f.!_.lg alhost:B0B0/subanta/rsubanta. jsp - Microsoft Internet Explorer

@Back - d @ @ f_h /'? Search *Favorites {:‘3 [fj:_\‘l' :;, Iﬂ - J ﬁ }3 @ & K @j %

ESearch the Webl Psearch = Address @st:BDBD,I'subanta,l'rsubanta.jsp V| ;Links 2 Ssnaat B B

Y_’ T 4‘| V|Search > Y @Y |Signin f.i'.MyWeb ¥ ﬁnnswers - &Mobile * P obs v »»
A~

TSI gRT Faod Uedred HT ufa-wcad faamer
e 1 e O 2 e < e O SO e 1 1 O = e 1
Hded UToUE T4 UPO-Tcad To & Tad $Ua1 d5pd a9, ¥ A1 §59d U6 ferd
L TBT- W S & T Tel e B 1ot ol e [

IRAIC]
]

@ .ﬂ Local inkranet

. 21Intetn.. + [0 Unkitled- ... ™ Final draft E Start Torncat @'3 Chapter-4,.. R Z_: w1152 PM

109

Figure 4.4

The site accepts devanagari data in utf-8 format. Therefore, a Unicode IME like

Baraha®® has to be installed. Otherwise, user can enter some the test files provide.

Upon clicking the button labeled ‘“TaaNHI—oa" e & ford Tt foea @i The JSP interface

sends data to the RSubanta object, which after tokenizing the input sends each word for
preprocessing and the result of preprocessor to SupAnalyzer if the word is tagged SUBANTA.
The RSubanta keeps on building the display depending on the output from the proproessor-
recognizer and analyzer objects.

Input-Output examples -

Input text
ggST g Welewa: Mfed | YA SNfAFwe 33 UST 60l 9Rd 9&dl <A ¥
guear afd | gargeman: fAvd e wer: yefer: A | I9ue 9 e gd o

T Arad garam: g Haar | TR YEeS 6 Gu gqa dgwdl e urma 7 |

T fasae T yfaasy 3% ggst Sfear wafd

Analysis of subanta-padas

o

ST [+ T Uahaaa] Regar [Reg+ S8t agaaw] Weled: [Walcaa+§ T

\

Tshawd] [AIT_VERB] [I_PUNCT] i@ [YReniei+S Tw@dl Thawe] Suidmure
[N+ At Tahaad] 38 [SSH+Y TUHT Uhaod] T [qelT+ g YIHT Uahaad] wgu

[Tui+f Aot Twaed] 9RA [WRA+HE Gt TRaed] 9SA (ST gAaT Uawadd]

M [+l g Uhawd] [T_AV] WA [QEifddr+ g YW Uhaed]
[7aft_VERB] ST [GYST+3R/SH UsaH/¥8T Uwmaod]l fowd [fOwg+ & dwt

Thd<] 3T [d{%oh+u1<~|\ UIHT dgdod] [l [RAT+TH JAHT Fgd<H] U foTdr:

[T +S 9 WomT sgaed] [Ef_VERB] [I_PUNCT] T@U [T&Ur+a qarar Twaed]

[FE_AV] I8 [IS+3fT ool Twaed] g4 [qa+3W B tmaed] o [$m+g
T Uehaad] SN [EfRa+s worr fBeftar sgaed] [FEq_AV] gaman [gr+s/sy

236 hitp://www.baraha.com/BarahalME.htm

110

UeoHl/NE Ushded] S [QS+3MH Wl "gaed] Fade [FHAad+y UUHT ThawA]

[I_PUNCT] 7&=T: [(g+3T8/3H Usadl, ¥S7 Uamdaod] JHRA [THG+ET AT Twaed] 9

[T+ THT Tehaod] Taul [qEur+3rq Bl Uswha=e] gade [gaadq+ § TUH THaod]

Tl [AghT+TS Tadt Thaw] fasd [fasa+3m B Twawd] Uredar [Uead+ 9

Tl ThaA] [FM_AV] [I_PUNCT] 76 [dg+39 ¥ Thawd] fasiger [fasa+& o4, vt

THTTT] T [FR+S =gl Twaaw] giiase [Uiias+3r Bfar twaed] 3 [Sea+g

TOHT UHdod] ST [UYS+¥ T Twhaed] A [3REfa+y uuw Twadd]

\

[7afd_VERB] [I_PUNCT] }

4.3.1 Result analysis and limitation

System prints result as output in three colors - Black, Blue and Red. All analyzed subanta in
black color, non subanta (punctuations /avyaya/verb) in blue color and all un-analyzed subanta
in red color. The result has three structure, subanta-pada [analysis] in Black color [non-subanta
with tag] in Blue color and unanalyzed subanta with' SUBANTA' tag in Red color.

Currently this system is giving multiple results in ambiguous cases, which will be solved
by analyzing the context at the sentence level. A doctoral work to analyze karaka mechanically is
nearing its completion. The feedback from the karaka component will be taken to disambiguate
between multiple results in this case. In addition, we will be adding some constraints in the forms
of additional rules or data to minimize ambiguity. At present, we have only 90,000 primary verb
forms in the verb database, which are commonly found in Sanskrit literature. Though it is very
unlikely that ordinary Sanskrit literature will overshoot this list, yet the system is likely to start
processing a verb as subanta if not found in the database. We have 519 avyayas listed in our
avyaya database. it is not enough for avayaya recognition in ordinary Sanskrit literature. In this
case, the system is likely to start processing an avyaya as subanta, if it is not found in avyaya

database. We will try to improve results and database.

111

CONCLUSION

112

The present R & D is an attempt to process Sanskrit NP inflections by way of Panini’s
rule system, appropriate database and example-base. The system developed is an online system
run on Apache Tomcat platform using Java servlet and MSSQL server 2005 as back end. The
thesis includes a PC version run on Apache-Tomcat and works on data in text files. The goal is
to simplify Sanskrit text for self reading, understanding, and also for any Machine (Aided)

Translation from Sanskrit to other languages.

Limitations of the system

This system has been developed according to Paninian formulation. System accepts only
non-joint (sandhi-rahita) Sanskrit text in devanagari script. This system fully depends on both
the rule base, example base and a database of other linguistic resources. It recognizes subanta by
marking all non-subanta in the sentence by checking the verb and avyaya database. At this point,
the system takes Sanskrit text in utf-8 format (in a text area), the future upgrade will include a
feature by which multiple files can be uploaded, queued for processing and will E-mail the
processed files to the sender. Since it is an online system, the speed will depend on the

bandwidth limitations on the client side.

Limitations of the recognition process

This system has the following recognition limitations

e at present, we have only 90,000 primary verb forms in the verb database, which are
commonly found in Sanskrit literature. Though it is very unlikely that ordinary Sanskrit
literature will overshoot this list, yet the system is likely to start processing a verb as
subanta if not found in the database

e the system will wrongly mark a verb with upasarga or derived by other derivational
process as subanta as it will not be found in the verb database. A separate research is
underway to comprehensively tag all Sanskrit verbs. The benefits of that research will
also help this system in improving performance

e this work assumes initial sandhi processing, without which, some results may turn out to

be incorrect A separate research is currently being done on sandhi splitting on identical

113

platform. Therefore the next release of the system will include the capability to
preprocess for sandhi joins as well for better results

we have 519 avyayas listed in our avyaya database. It is not enough for avyaya
recognition in ordinary Sanskrit literature. In this case, the system is likely to start
processing an avyaya as subanta, if it is not found in avyaya database.

some forms ending in primary affixes look like subanta but they are originally avyayas.
For example: UfdqH, T, 31, fa@& ete. System will incorrectly recognize and process
them as subanta.

many subantas (basically str pratyayanta in locative singular) look like verbs these

subantas will be wrongly recognized as verbs for example, ¥afd, T<sft, Tafd, T@f etc.

Limitations of the analysis process

The system has the following analysis limitations

Same forms are available in the dual of nominative and accusative cases, for example,

(@), dual of instrumental, dative and ablative cases, for example (IAT®) plural of
dative and ablative cases, for example (T®8%:), dual of genitive and locative cases, for
example (ﬂmfr :). In neuter gender as well, the nominative and accusative singular
forms may be identical as in for example &&H (1-1 and 2-1). In such cases, the system

will give all possible results as in

T = s [7./ f&. f3a.]
AT = wH [q./4./4. fBa.]
T = wg [<1./4. 9ga.]
THA: = g [v./9. fBa.]
LESET: = g/em [7./T8. Tad.]

A

E{RVED) [G./¥. T&a.]

some krdanta forms (generally lyap, tumun, and ktva suffix ending) look like subanta

(for example - fagw ufdean, e, tlﬁ_@:[T4, Ag*—l\, Uald, EME] etc.). In such cases, the

system may give wrong results as:

114

IEEE=]

o
dloddl

faz + =9 vt tHhawA

gfder + § TUHT Tha=A
T = Tl + g T Thaae
ufeqH = Ufeg + o fadtar uEEe
T = T+ 3 fodrar e
AT = A7 + 1 feftar whae
Ve = WS + & =l T
e = fag + & =g e

To solve this problem, we are trying to store the krdanta forms of the 500 commonly
found verb roots.
e This system does not have gender information for pratipadikas, nor does it attempt to

guess the gender. A separate research is underway in gender identification and analysis.

Ambiguity resolution strategies

Currently this system is giving multiple results in ambiguous cases, which will be solved
by analyzing the context at the sentence level. A doctoral work to analyze karaka mechanically is
nearing its completion. The feedback from the karaka component will be taken to disambiguate
between multiple results in this case. In addition, we will be adding some constraints in the forms

of additional rules or data to minimize ambiguity.

Accuracy of results
We have tested on 10 separate files (collected from Sanskrit magazines,
Paficatantra story and other resources) and did an analysis of the correct and incorrect results as

follows -

File Description Words | Result | Time

115

(%)

Sanskrit Stories from the 560 95 2
corpus-1 magazine sec.
sambhasana
sandesal’
Sanskrit Stories from the 450 90 1.5
corpus-2 magazine sec.
sambhasana
sandesal’
Sanskrit Story collected from | 1023 92 3.5
corpus-3 books for 10™ class sec.
CBSCE board
Sanskrit Story collected from | 650 93 2
corpus-4 books for 10™ class sec.
CBSCE board
Sanskrit Corpus collected | 478 87 1.4
corpus-5 from the magazine sec
sambhasana
sandeSal’
Sanskrit Corpus collected | 705 90.5 2.4
corpus-6 from the magazine sec.
sambhasana
sandeSal’
Sanskrit Sanskrit story catura | 823 85 3
corpus-7 srgalah’ and other sec.
from Paficatantra
Sanskrit Sanskrit story ‘yasya | 1010 96.75 34
corpus-8 buddhirtasya sec.
balam’and ‘deva
svaminah’ from

116

Paficatantra
Sanskrit Sanskrit story ‘trayoh | 840 91.25 3
corpus-9 dhartal’ from sec.
Paficatantra
Sanskrit Sanskrit story ‘catura | 903 96 3
corpus-10 | sasakah” from sec.
Paficatantra
91.65
Average

Table-5.1 : Test Sanskrit corpus

So the average accuracy of the SRAS at this point is 91.65% which will further improve

with several additions to the rule base, example base and other linguistic resource files.

Sample-1

The test corpus (corpus-2) with 232 words gave the following result-

T ATE:
FH JfeT A o 2 g S 2 W S U 9 qgE e | U wegEs:
A - A T GEEAHT T9aq | 31T IR b VA0 e g W9 | 45—

MECasd ST SAREETE THS-URaN 9aq | aediq a8 & W@l o | |

TCATEETA UF 1 8e¥ s | 77 U [aneras 9 adq | fe6-Heraded uat ot

Ao h

HUCT "2® UHl Feavien [Jer o "R e | W@a=aan ¥4y &Y T & §ednT:

-l

AT | A ACRATAENERIHS: e el eE-Weeds M-Heiedd §8 Tw:
JHA | AeE: TWERA-Ov Ted SEH: AE | T HHAR: A | T T Sa=Ad-
A (a)

fieh: T | SN 3 & I9ae §gUaE 3R | dRA & @O st U

IRI TAOr Siforad | FAY WY WRAH SHeras 9wt ¥ vy ==t afeq | e o

117

qE A0 B JAMUSH FHdf | FRAR TT §: T MG fforad | T g

FHAT AT | 7 BT A TSH TEH T ATHAMNT | 24 IWRA 2%%\9 a7 % VL UM

T Y AHAIA— e WA TR T Hadh: AH |" TR T IRaed g
I | AR HEE: ¥ U W | T WINUY Heal SYINAE O 3EEq | STy SEiq a8
a9y e | 3T HON T8 Tiad: 3 U aeftawsy yfes: vafd | ey s

TN 9afel | aE-AEE ¥ ARG T el Hafw | e 3eed ! Ui Hed !

TRAET I T e &-Halad: U¥aH a7 g |

Output after recognition and analysis of input text

{ T[S+ YO UdTH] HEE: [FRE+ YU Umded] wE [H+T S, vE UHded]

[31€7_VERB] UTaq [Tag+¥ THT Ueha=a] R [Rer+31q Beftar tha=a] [7_PUNCT] g
[fh+3r Beftar uwa=a] [WAIR_VERB] [?_PUNCT] U: [W§+{ T T&Hd=d] deHH

[T+ §8F agae] U= [(fiem guw sga=q] =m=n [Se+g TUH (Haed] "8E:

[FeE+T TUAT THawd] [AFT_VERB] [I_PUNCT] W¥: [W§+d YUH THaod]| HETqes:

[METY&E+Y TUHT Tahded] WA [Fa9RI+E S, 87 THaad] gom: [TuH+g

T Tehaa] TeHH=T [TEHA=+E TUA Thawd] [3THIq_VERB] [I_PUNCT] 31&%
[37+%7 T, v8F Uwaed] i [ofem+3 =gt twaem] W [T+ T Uhaed] vaust
[VRTAI+g W Uhe] A [TAaR SH, 9 Uhaea] QO [+ fadra
THaed] [9T9d_VERB] [I_PUNCT] “2&Hecas [(E&HecI+¥ 3, ¥SI Uamded] :

[F+g oWl THIE] SORERGARS [SAREETR+E 6, ¥S! THaod] HH€uRanr

[FHsuRaR+s Tl Twawa] [T9ad_VERB] [I_PUNCT] aredrq [arcd+S o=t

\

[N

THaa] T [T+% 3, 87 Uhaad] & [ER+Y 790 THhaad] el [@ed+3 agqeff

Tsha=] [3EIM_VERB] [I_PUNCT] &: [H+¥ TUHT THd=] SR [arearaer+E

quH THISA] [TI_AV] STeiseyl [Eieeu+3d fBdiar THawd] [3Wsq_VERB]

[I_LPUNCT] [@I_AV] [ta_AV] faararay [feerwra+sm Bdr twa=q] [F_AV]

118

[37&Aq_VERB] [I_PUNCT] “e&Heca [1eemeca+¥d T, VoI Uamd=d] Uel [Tefi+y

g THaDd] ofiudt [Sudt+g Tudr Uwmadd] &Uel [HUel+g UYW UHaed] HE®

[FeE+3it/3fte gum it fGaem] @ [TE+g UM Twmaed] Seavien [Seavien+g

TUAT Tehaed] faqar [fommr+q guwr tawaed] [9_AV] wleen [ARer+g ggdr tehaed]

[3TE_VERB] [I_PUNCT] @Rl [FEa=d+3f/sq UsaH/s8 THaod] 9y

o

[Ge+gq F@Hr sgaed] FRY [GE+qY 9@H agaed] q&mn [AEisy gsem/aE

THaaT] WA [WEanT+yg UUA Uwaed] [SMH_VERB] [I_PUNCT] [@a7_AV]
SeTai TR AThUS: [l aTeTaNE TS +3 THT Tehd<] [3THdq_VERB] [Ta_AV]
TEENEICIH [TEEWEII+H T, WS UHhaaw] MRMed [MRMaed+2T qaar Thae]

[GE_AV] SW&: [§WH+g TUA THIeA] [39aq_VERB] [I_PUNCT] “8&: [12&+7¥

\

fadftar ggaad] Wiy [ty wgeff thaed] [Wea_AV] SnES:

[SRE®+¥ AT THaed] [3TEHq_VERB] [I_PUNCT] &: [§+% UMl THaod] HHd:

[T+ TN Tehaad] [3TEG_VERB] [I_PUNCT] &: [€+¥ M Tswd=] [a&d:_AV]

TaAaE R [EaAaEHa+g U THhaed] [STEM_VERB] [I_PUNCT] &R

[FRAR+E Tt Thaee] [AfU_AV] & [W+Y TH Thaod] T8 [Grg+80 34, vl

THaod] FgUANH [FguanT+3 fEdar twaed] [@Uq_VERB] [I_PUNCT] &R
[+ ot Tahaed] 9 [+ oA Thaa] @ [g=t+3r i twaes]
s [+ fBdtar twaee] [Ufd_AV] sHa [3a+sTe g fBdtar sgae] gafor

[O+<T womr fadar sgaee] [3iferad_VERB] [I_PUNCT] ¥dY [qd+qq ¥w@H aga=]

WY [0F+{Y FWHT Tgae] IRAE [ART+E 3, 987 Uwaad] sfiees [Shew+s 39,

St Thaad] GRAET [GRA+S/SH TsaH/vE Thaed] [F_AV] fan [+ =get

Tsaad] = [Ti+g gUd Usmaad] [Af_VERB] [I_PUNCT] [3rI_AV] [31fU_AV] @f3
[T+ g T3 agaed] Tafor [+ g fBdar sgae] se [BE+ s aqdt

TSIl Sgaed] AMYSH [FMUST+3H BT w@waed] [Faf_VERB] [I_PUNCT] ®RAX

[FRATR+TS TeHl Tohaed] [TI_AV] §: [F+3 THT Thd<d] @Y [F{+F T@dt thae]

119

THHATH [T+ fBdar Uawa=d] [1feraq_VERB] [I_PUNCT] UST [UST+¥ T

Thaad] giET [uf&«g+€r qAAT Thdad] ACHHRYT [HGRAT+Y U ThddH]
[31f&_VERB] [I_PUNCT] [3f@_AV] B [SE+SH T dgaod] am [qr+3r f3dtar
THaaq] [Wf_VERB] T&aq [+ fBddr w&waed] [F_AV] [s9af<_VERB]
[I_PUNCT] 3 _SUBANTA % [qH+fF Twt Twa=d] oy [a5+F Twd Twha=d] 18]

[Tg+3m fBfar twaed] [Ud_AV] 7o [qem+E qudt Twaed] §<9 [F<y+E T
THaod] & [H+g TUA Twhawd] [AH2UIq_VERB] 3@H [3@+31q fBdar twHa=H]

AR [Ed=AHRT+E §H, SET THmadd] TUW: [UUH+Y UUH THADH] oI

[Faw+T YW UHaed] [AfW_VERB] " _PUNCT ['_PUNCT] ¥R [Far+f g

THd=A] | [F+Yg TUHAT THIA] RIS [ARG+E S, ¥8 Thawd] yfafafe: [gfafRfer+g

TUHT Tchddd] [311'{:ﬂ‘5[_VERB] [[_PUNCT] 9Rq: [Yd+Y TAHT Tchddd] TeE: [stH’TF[
fadtar sgaem] [S_AV] Wit [wd+3f/3ite gomr fBdiar == [&:_VERB] [I_PUNCT]
T [T+TF F, Y8 UHaed] WNUY [WNO+gY §WEr agaed] [Faer_AV] IonEe

[CYUH+TT T, T8I UFHawH] 8N [8W+9 YoHT Tha=] [3@8q_VERB] [I_PUNCT] arog
[aTeT+9q Tt agad] [THq_VERB] 76 [T+¥ T, W87 Tawdaod] favr: [favw+g o

THad] e [Fg-+e/ v/ SR/ sq wam/ B aga=./ae=t. /st twa=a] [1_PUNCT]

I [T+ AT Thaa] SO [®ROT+ET AT Twhaad] 76 [T+8 T4, T8 &ae]

Tutaq: [WRaq@+g YU T&haad] [E_AV] [HfU_AV] Sekaqey [adfaaeu+s

el Twaed] Ui (Ui sty ey sy s q v/ Bt agaed./geadt /a8t twhae]

[wafd_VERB] [I_PUNCT] faarery [femea+gq Fw@at agaed] aorer: [are+we aqeff

USOHT Sgadd] HHRET: [FHRE + ST/ wem/ B agaed] [waf<i_VERB] [I_PUNCT]

T [AIRAE+E S, Y87 Thaad] qian: [qe+S/sH ToaHd /g8t Thaad]

[F_AV] wdtert [geftae+3m v§t agaed] [Fa<_VERB] [|I_PUNCT] Se: [aTel+3T& T2HT

Fga=d] [3Teed_VERB] [|_PUNCT] Ufdsti [UfdstH+3mH w8 "gawd] [H&d_VERB]

['_PUNCT] 9Ra& [WRA+ET S, T8I Tha=a] I [T+37 Bl Tewra=q] e [F60+37q

120

el Caherer] SeEwered: [fewaelic+3Te o dgae] [avad_VERB] 79 [d+3r fdtar
THIEA] [Y@d_VERB] [I_PUNCT] }

Processing speed

System took 2 secs for processing 232 words on an acer machine with Intel Pentium 4,

CPU 1.80GHz, 256 MB of RAM.

Future Research and Development
The SRAS has tremendous potentials in the field of Sanskrit NLP and M(A)TS. Some of

the immediate and future applications of the system are discussed below —

Machine Translation System (MTS)
Major goal of this and other R&D currently in progress is to design an M(A)TS from
Sanskrit to Indian languages, which can not be achieved without reverse analysis of subanta

padas.

Self-reading and understanding
The subanta analyzer can alone be used for simplification of Sanskrit texts for simple

reading and comprehension.

Sanskrit processing for any purpose

Any further processing of Sanskrit can be done only after subantas have been analyzed —
for example - krdanta recognition and analysis, taddhita recognition and analysis, samdasa
recognition and analysis, POS tagging, gender recognition and analysis. Sanskrit sentence
discourse analysis can be future areas of R & D. A computational lexicography work on
etymological, exegetical methods adopted in nirukta of Yaska is another fascinating area to work

on. Developing a Sanskrit text search engine like Astadhyayr , Mahabharata , Ramayana

121

purana , Vedic index and search etc. are other future research and development areas in this field

which can be undertaken at the Ph.D. level.

Towards developing a Sanskrit Analysis System

The SRAS can be the first step towards developing a comprehensive analysis systemfor

Sanskrit. Jha®*” and all (2006) presented a Sanskrit Analysis System recently as follows —

Input text
[upload file or cut/copy-paste text in text-area component]
|
pre-processing
|

charset check = non Unicode = discontinue

language check = not Sanskrit = discontinue

|
[LIGHT SANDHI PROCESSING]

connect to tinanta db = export verbs into a text file
|
[TINANTA MODULE]
tag verbs—> verbs not found > proceed to next step
[reverse derivation/duplication for complex verb forms]

|
[SUBANTA MODULE]

7 Towards a Computational analysis system for Sanskrit” in the proceeding of first National
symposium on Modeling and Shallow parsing of Indian Languages at Indian Institute of
Technology Bombay pp 25-34 on 2" o 41 April 2006

122

connect to subanta db = export avyaya data

check for avyayas - tag them

connect to subanta db = export vibhakti data

|
check vibhaktis—>tag nps for vibhaktis

|
[SAMASA MODULE]

|
[TADDHITA MODULE]

|
[STRI PRATYAYA MODULE]

|
[KRDANTA MODULE]

|
[AVYAYA MODULE]
|

[KARAKA MODULE]

|
yogyata check

karaka semantics check

karaka-vibhakti analysis

output text display/download/email

123

APPENDICES

124

APPENDIX- I
CD Program: Welcome page

To the

e et e and vl

Subanta Recoguizer and Analyzer System (SRAS) has heen developed as a supplement to a dissertation submutted
by Subash to the Special Center for Sansknt Studies, Jawaharlal Nehru University, m partial fulfillment of the
requuremnents for the award of the degree of Master of Plulosophy. The R & D for this work has been camied out
by Subash under the supervision of Dr, Girish Nath Jha, Special Center for Sansknt Studies, JN.U., New Dellu -
110067

Ol e o St

APPENDIX- II

125

CD: Home page

APPENDIX- III

CD: Contact us page

126

ISTALLATION INSTRUCTIONS HOW TO RUN SRAS SEND FEEDEACK

Subanta Recognizer and Analyzer for Sanskint (SRAS)

If you have Java and Tomcat installed on your machine, then do the following -

1. Copy the Subanta folder from this CD to the “wehapps" folder under tomcat installation folder, for example, C:\Program Files\dpache
Tomeat 4.0hwehapps

2. Mow start tomeat by clicking on the Stant Tomcat icon in C:\Program FilesiApache Tomeat 4.0%hin
Or
by clicking Shart seenu=All Programe=Apache Tomeat 4. (t=Shart Tomeat,

3. Now, click run SEAS to run the application.
If it does not start awtomatically, then copy the link hiip:/Mocalhost: 3080 /subantarsubanta.jsp to your weh browser URL

5. Now, start Baraha IME (hy clicking Stert menu=All Programs=Baraha=Faraha Direct) and set the language to Sanskrit and owiput format to
unicode. ¥You can type using phonetic layout, the instructions for which can be found in the disseration paged
Alternatively, you can click the following links to get sample Sanskit text-

SANSERIT CORPUS-1 SANSKRIT CORPUS-2 SANSERIT CORPUS-3

SANSERIT CORPUS-4 = SANSKRIT CORPUS.5 SANSKRIT CORPUS-6

SANSERIT CORPUS-7 SANSKRIT CORPUS-8 SANSERIT CORPUS-9
SANSKERIT CORPUS-10

Input Instructions:

Please make sure that the input follows the following requiremenis-
. input mustbe Devanagari UTF-§ Sanshrit text !

+ input musthe sandhi free

+ input can be awordisentenceicomplete texis

Resnlt analysis

System prints result as owiput in three colors - Black , Blue and Bed
.+ analyzed subania

» Ton subanta (puctuations/avyayafverh)

+ un-analyzed subanta

The result has the following structure

+ subanta pada [analysis] in Black coloxr

+ [mon-subanta with tag] in Blue color

+ unanalyzed subania with ° SUBANTA tag in Red color

For details, see the chapter-1I titled Sibaria processing of Panini
For analysis of Subanta-padas, see the chapter-IT tifled Sulbands analyss

ISTALLATION INSTRUCTIONS HOW TO RUN SRAS SEND FEEDEACK

APPENDIX- IV

Webpage user interface

127

WU G Gded Ut 3N Upfd-Wedd fasm

P R R | e LRI E G QA e TR Tk R M I L M ol e

oo TedlH T4 UPTT-Ucd FasmT & Tord Ul $Fpd a0, 9 T Wgpd UG Tord

[WY T & T T R] Run in debug mode [|

APPENDIX-V
The SRAS modules

SANSKRIT TEXT (UTF-8)

128

!

PREPROCESSOR

!

NOMINAL
DATABASE

RECOGNIZER

l

SANDHI RULE

LINGUISTIC
RESOURCES

T

MORPHOLOGICAL
ANALYZER

l

RULE BASE

SUBANTA
EXAMPLE BASE

!

DISPLAY

|
OUTPUT

129

T

SUBANTA RULE

APPENDIX- VI: Test sample-1

a3 http:#localhost:B0B0/subantalrsubanta. jsp - Microsoft Internet Explorer

Fle Edt View Favorbes Tools Help #
OBack " &2 \ﬂ ﬂ N Dseach 52 Favores @‘t Y E I ﬁ J"i H & E %
o MW/ A b Ls % @ 5V
Search the Web‘ Poearch » Address :&jhttp:ﬁlocalhost:SUSUIsuhanta,frsutV lirks ™ @ Snaglt E)

A

3 TRy Sfieaw, - (ouate iR ST FERRER e T SR T
AN | TATI W O Ted | AR QO FEeed . 00 HEATEdT TET: TR,

TR | F: I T - T e aRme o e Wi o | da il o o
CRMATEI: HTY IO S v I U W | v 30 AR ST TR TEcT W A |
TWCEee: THU N - v TS GO TRae: 69, TR GEART T O 6O T SR AU
| e fom & Fl W A A | piddgue [

TROMA

{ ET SUBANTL Bee SUBANTL [T AV Uo7 [TeE1 i e oRoT (RO el e i, (3Taaerg
T wpqaa] [Hegfere: VERE] [|_PUNCT) 7oi: [49T+g WUHT Toa) 5T [Pt VT a500a] Sitaa: (g

TR T HT (T SO] G [t WA e [| PUNCT] S9N [IRHET 89, W T SEE
[EFBF3, T T0el] T: [THEF, T] Tt (0] Tl Tehae] 3eer] (3T] T Tt [PUNCT] 3
(3309, W1 0] (7 _4V) Mol (AT WA 2] [|_PUNCT) ot [ien agodel] SRS [HRGT2r,

TR B | [STedier s FH1 TP THmA SUBLTA HUMH, [HEMe+E T wpaw) [|_PUNCT] 3% [gigHg mm
T FT: (S0 T T0e) GO, (VR e aEawe] e (Y T Tohaee] a [FEH0g e agm]
SFEIE, (SRR T TeA] [VERE] (| PUNCT) THT [T+t TSt Taas] FONesi: [JaNasfi+g WU D]
SR [T T TR el [HRTHY WU TR TR [T AT TR T (TR T T O,

[FTHETH Tl Tohoael) A, (AR T3l Thaat] [3r_VERE] [PUNCT) TOerer (ST +3TA, 81 el et en r

@1 ‘-j Local inkranet

— = -
?.'- S e dasses [B start Tomeat T 2 Intermet Expla,., | [4 Notepad - |2 '.'1:: 235 PM

130

APPENDIX- VII

Test sample-2

:
[
L]

@Back a9 \ﬂ ﬁ ;)/ sath Favorites @i v f W - :ﬁ -J'i BOME ©

Searthhe Wt | Pleach * Addess {,‘Jhttp lcahast:8040)subants| rsutV ks ™ @snagt [1

A

i

| T (T TR, T T et e ohel) VT [P 5, oY ool e, (et
TEciF et ST, (3T, T Tpava] (30T VERE] [|_PUNCT] (93 AV 3RT: (YRR, W 5 wer om:
(775, VIR TR T (S T e TR Oe: [TEATea g W1 T9R] A (A T wae] [| FUNCT]
[0 AT 9571 (VL W TS 4 [, T TR0 TR (T + T, W] T [T, 961]
I, [P, T A5 Foqmaed [T +ET S, W61 el Tt (Tfel s T g m /) 1o
T (R T T0e) SV (Bt e e [* PUNCT] [AV) [PUNCT] (3 AV) 75, [Tt
T T (3 AT VA, (40, T T 77 SUBANTA Ry (o o8, i) s, (RO
TR TR HTTRA, [FTTORHY WA Tava] [| PUNCT] [er AV) 7% SUBANTA FRTeT [FAHFT 29, T Tohel] ToTed
[{o2+F7 W, 761 TR WO, (W69, T o] S (21 o oo e (a0 M T

[| FUNCT) SRIGTET (2T 20, 81 100 T1 [T+ T S0ee] T (70471 i T (37, VERE]

4T SUBANTA SFERF [et v (7047 o Y] 7 SURANTA T (o Tl vt 0 (e v
U] [, PUNCT] FFTwaeas SUBANTA FFUG) (WG, WO Tl (4T VERE] [| PUNCT] (37: AV] 00: (e, Tyl
oA TE0TR) A (I, T Tohaae] TR (SO, e Tme) R (R Tl 7o
(oo e o 2] (| PUNCT) T, [TecAsity Toma! Teel] v, [FRTMERT Tt TH0ed) 7 SUBANTA Tgry
[THET 5, T8 TR0 70 AT, WA TR U0 (FA+ W U] (B VERE] [* PUNCT) [AV

(| PUNCT) [Tt AV) RVRIGIET [ZfSRAT+EE 50, W) To0a] a0 [0+ TOA1 T0ae] [FUNCT] 7 SUBANTA Tl [T

T TR FF [FEAEHY WA TeTR] B [FUET O, W T SO [(RTEOAE TR T QU (e
1 Tl TR [0+, Tt e {1 PUNCT) et (Bes i Topeer) T [+ e Tohaael) 79 SUBANTA 5
Wﬁ%ﬂﬂ’ﬂwﬂ]ﬂﬂ@ (SR e T Wﬁﬂﬁaﬁmmw [wﬂmraamwmwﬁm v

ﬂj Done . J Localintranet
" s[an 2 Wnd., - f Start Tomcat ff, 2 It -rb-tr%mtepad vﬂﬂl APPENDICE.. 1_ W 28PN

131

APPENDIX-VIII: Test sample -3

I
L]

Seath the i | Plearch ~ Adbess {:ﬂhttp lacalhast: 3080 subant3) rsutV s ™ @t B [

A

LRI

| VAT (FOTHH T 9] [PUNCT] Srgiam: [Fegd e+ T Teoes) aefees asaranad: [Fites ey
I A7) [PUNCT)] TR (TR T Tarae] [AV] 307 SUBANTA FITEITS SUBKNTA ! PUNCT] [¥et:_AY) 1w
[ATTEAIHG, TR T [, PUNCT] s SUBANTA * PUNCT [PUNCT) TUT: [TQUwERiey, Tl Tod] 3301

[T o] T TTTe] AT [0+, e e (3 V) 0T, (Ser 3, et Tepaeer] (| PUNCT) i
(TS FH) 7 SUBANTA 349 SUBANTA 797 SUBANTA SUBANTA JE [HFRGHY WIA 9T ATTHIN
(AT FRH) TTe] [PUNCT] 255 (B30, VA1 Toh0] e [l T Tehame] (3t V] MU, [T WA
T TET [T 3 0] [| FUNCT) T (W% S0 Tev e Sy (ST SO T e (et
HEA TTTe]) SFFFAI, [FeFFAET T4 Toh0Ts] THUT: [THUHET/EH, To0al) T00H) Aae (Aaer+, T Taee) e,
[+, Feefrn wepoam] [3Tefi VERE] [| PUNCT] TrTG, [TRR+2f T3 T304 THURE, [(FARERT T30 T0e] 37
[FREHY VAT T0R) HTERTIS [T SOl Teaa] (B AT) 60 SURANTA Teoed [Temed+ %, fadt Toa]

T SUBANTA HTUE [ATVE+¥A Tic Thaa] [AV] SUFRIT [SUFRAHY WA 06009 [HH VERE] 97 [76-H] TIH1 090t
[|_PUNCT) feuferode: (i, vl Toval e (g AV] 6 (o7 e Toaae] o (G478 P Toava

Y09 SUBANTA 30 [FTeas] T Tehtel) DeTeadel [Tttty Tl T iedtts [Ueaafi+ WiTe T9vd]

T SIUBANTA ZHFRTAOT [ZHoREHT] A T (77 A) TR (ARG e, T ot Ferwe) Wt
[FOERVRITT9, T Tovael] WO [TV, T e[| PUNCT] 1 (R R TahTes] FOTed [FOTH+ET 5, Wi T

[PUNCT] FREET (AT 57, T Toa] 0o (W3, (ot Tovae] S (e W Taree [| PUNCT]
IR (SRR WA TSR] T [T+ ool T Fefremamers, [Rfeammer fiv ree) Jftd
(AP ol Teve] [| PUNCT) YA (Ve Tl] W, [P+, S mevaa [| PUNCT) T [T

oM EWH]?ET [T+ T ﬂ@ﬂﬂ]ﬂ-‘m [Hﬁ%ﬁqﬂ'ﬂ oAl Wﬁ‘rwuwj RIREEIORITRE [ammmmmmuw% T e

| Dore W Lacalintranet
;,' stat | W2V, - r Sttt Toncat ﬁj 2 Tntemet, . vrmr%h:ltepad r APPENDICE, . I ¥, 23PN

132

BIBLIOGRAPHY

133

10.

11

12.

. Abbi, Anvita. Semantic universals in Indian language, Indian Institute of Advance

Study,Shimla,1994

Academy of Sanskrit Research, (ASR) Melkote,

Ananthanarayana, H. S., 1970, ‘The karaka theory and case grammar’, Indian Linguistics,
Poona, 31: 14-27.

Anderson, An Introduction to natural languages processing, Pentice Hall India

Anderson, John M., 1971, ‘the grammar of case: towards a localistic theory’, Cambridge
University Press, Cambridge.

Anusaaraka, http:/www.iiit.net/ltrc/Anusaaraka/anu_home.html (accessed: 27 April

2005).

Baraha, Software, http://www.baraha.com/BarahalME.htm (accessed: 12 July 2006).

Bhandarkar, R.G., 1924, ‘First book of Sanskrit’ Radhabai Atmaram Sagoon, Bombay.
Bharati Akshar Amba P. Kulkarni Vineet Chaitanya, 1996, Challenges in developing
word analyzers for Indian languages, Presented at Workshop on Morphology, CIEFL,
Hyderabad.

Bharati, , A., Sangal R., 1990, “A karaka based approach to parsing of Indian languages”,

proc of the 13 ™ COLING vol 3, pp 30-35, Finland.

. Bharati, Akshar and Rajeev Sangal, Parsing free wordorder anguages using the Paninian

framework, In ACL93: Proc.of Annual Meeting of Association for Computational
Linguistics, Association for Computational Linguistics, New York, 1993a.
Bharati, Akshar, Dipti M Sharma, Vineet Chaitanya, Amba P Kulkarni, Rajeev Sangal,

Durgesh D Rao, LERIL : Collaborative Effort for Creating Lexical Resources, In Proc. of

134

13.

Workshop on Language Resources in Asian Languages, together with 6th NLP Pacific
Rim Symposium, Tokyo

Bharati, Akshar, Rajeev Sangal and Vineet Chaitanya, Natural language processing,
complexity theory and logic, In K.V.Nori and C.E. Veni Madhavan (eds.), Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer

Science 472, Springer-Verlag, Berlin, 1991a, pp.410-420.

14.Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 1995, Natural Language

15.

16.

17.

18.

Processing: A Paninian Perspective, Prentice-Hall of India, New Delhi.

Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, A computational framework for
Indian languages, Technical Report TRCS-90-100, Dept. of CSE, IIT Kanpur, July
1990b. (Course Notes for Intensive Course on NLP for Linguists, Vol.1)

Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, An appropriate strategy for
machine translation in India. In S.S.Agarwal and Subhash Pani (eds.), Information
Technology Applications in Language, Script and Speech, BPB Publications, New Delhi,
1994a.

Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, Course Material on A
Computational Grammar based on Paninian Framework, Indian Society for Technical
Education, Ministry of Human Resource Development, New Delhi, October 1993b.
Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, LFG, GB and Paninian
Frameworks: An NLP viewpoint, In Tutorial on NLP at CPAL-2: UNESCO Second
Regional Workshop on Computer Processing of Asian Languages, Dept. of CSE, IIT
Kanpur, 12-16, March 1992b, pp. 1-42. (Also available as TRCS-92-140, Dept. of CSE,

IIT Kanpur.)

135

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bhatta, V. P., 1991, ‘Epistemology Logic and Grammar : Analysis of Sentence -

Meaning’, Eastern Book Linkers, Delhi

Bhattacharya, Ram Shankar, 1953, ‘Kinds of agent as depicted by Panini’, Vak, Poona, 3:
129-33.
Blake, Barry J.,1994, ‘Case’, Cambridge Textbooks in Linguistics.: Cambridge

University Press, Cambridge

Bobaljik, Jonathan and Collin Phillips, eds. 1993. Papers on Case and Agreement, Vol. 1.
MIT Working Papers in Linguistics 19, Department of Linguistics, MIT.

Briggs, Rick, 1985, Knowledge representation in Sanskrit, A/ magazine. Dr. Shivamurthy

Swami, http://www.taralabalu.org/panini/ (accessed: 30 April 2005).

Buhler, Georg, 1985, The Roots of the Dhatupatha not found in Literature, A Reader on
the Sanskrit grammarians (J.F.Stall ed.), Motilal Banarasidass, Delhi.

Byrd, Roy, J., Calzolari, Nicoletta, Chodorow, Martin, S., Klavans, Judith, L., Neff,
Mary, S., and Rizk, Omneya, A., 1987.Tools and Methods for Computational Linguistics
(Computational Linguistics, 13:3-4, 219-240).

Cardona, George, 1964, ‘Panini’s karaka : agency, animation and identity’, Journal of
Indian Philosophy, Dordrecht. 2 : 231-306.

Cardona, George, 1967, ‘Panini’s syntactic categories’, Journal of the Oriental Institute,

Baroda (JOIB) 16: 201-15.

Cardona, George, 1999, Recent Research in Paninian Studies, Motilal Banarasidass, New
Dalhi
Cardona, George, 2004, ‘Some Questions on Panini’s Derivational system’ In SPLASH

proc. of iSTRANS, pp. 3.

136

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Cardona, George, Panini: his work and its traditions, Motilalal banarasidass, New Delhi
Chomsky, Noam A., 1986a.Knowledge of Language: Its Nature, Origin and Use (MIT
press, Cambridge, MA).

Date, C.J., Introduction to Database Systems, Addison-Wesley, Reading, MA, 1987.
Deshpande, Madhav M., 2002, Karakas: Direct and Indirect relationships, Indian
Linguistic Studies estschrift in honor of George Cardona (Madhav M. Deshpande and
Peter E. Hook ed.), Motilal Banarasidass, Delhi.

Desika, http://tdil.mit.gov.in/download/Desika.htm (accessed: 5 May 2005).

Divyadrusti, RCILTS, Utkal University, http://www.ilts-utkal.org/ocrpage.htm (accessed:
26 October 2005).

Dvivedi, H.P., 1978, ‘Studies in Panini’ Inter-India Publications, Delhi.

Edgren, A. H., 1885, ‘On the verbal roots of the Sanskrit language and of the Sanskrit
grammarians’ Journal of the Americal oriental Society 11: 1-55.

Fillmore, Charles J., The case for case, In E. Bach and R.T. Harms (eds.), Universals of
Linguistic Theory, Holt Rinehart and Winston, New York, 1968, pp. 1-88.

G.V. Singh, Girish Nath Jha Indian theory of knowledge: an Al perspective proc. of
seminar, ASR, Melcote, Mysore, 1994

Gillon, Brendan S., 2002, Bhartrhari’s Rule for Unexpressed Karakas, Indian Linguistic
Studies festschrift in honor of George Cardona (Madhav M. Deshpande and Peter E.
Hook ed.), Motilal Banarasidass, Delhi.

Giridharsharma Chaturvedi (ed.), 2004, Vaiyakaranasiddhantakaumudi with

Balamanorama and Tattvabodhini tika, Motilal Banarasidass, Delhi.

137

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Grosz Barbara J., Jones Karen Sparck, Webber Bonnie Lynn. 1986: Readings in Natural
Language Processing (Morgan Kaufmann Publishers, Inc, California)

Guru Prasad Shastri (ed). 1999, ‘Vyakarana-Mahabhasya with Pradipoddhat tika’
Pratibha Prakashan, Delhi.

Hart, George L., 1984, ‘A Rapid Sanskrit method’ Motilal Banarasidass, Delhi.

http://www.cse.iitk.ac.in/users/langtech/anubharti.htm (accessed: 30 November 2005).

http://www-asia.human.is.tohoku.ac.jp/demo/vasia/html/ (accessed : 17 April 2005).

Huet, Gerard, http://sanskrit.inria.fr/ (accessed : 30 January 2006).

Iyengar, D. Krishna, 1968, ‘New Model Sanskrit grammar’ The Samskrit Education
Society, Madras.

Iyer, K.A.Subramania, 1969, ‘Bhartrhari : A study of the vakyapadiya in the light of
ancient commentaries’ Deccan College, Poona.

Jamie Joworski, Java 2 Platform unleashed, BPB Publication, Techmedia, Ansari Road,
Dariya Ganj, New Delhi — 2.

Java Server Pages, http://java.sun.com/products/jsp/ (accessed: 10 July 2006).

JAVA, Servlet, http://java.sun.com/products/serviet/ (accessed: 10 July 2006).

Jha Girish N, 1993, Morphology of Sanskrit Case Affixes A Computational analysis
Dissertation of M.Phil submitted to Jawaharlal Nehru University, New Delhi-110067.

Jha Girish N, 1994, Indian theory of knowledge: an Al perspective (proc. of national
seminar on “Interface Mechanisms in Shastras and Computer Science”, Academy of

Sanskrit Research, Malcote, Mysore, April, 1994)

138

55.

56.

57.

58.

59.

60.

61.

62.

Jha Girish N, 1995, Proposing a computational system for Nominal Inflectional
Morphology in Sanskrit (Proc. of national seminar on “Reorganization of Sanskrit
Shastras with a view to prepare their computational database”, January, 1995)

Jha Girish Nath, 1996, Lexical conceptual structure and domain based machine
translation system(jointly with Prof. Kapil Kapoor, Prof. G.V. Singh) presented at a
symposium on Machine Aids for translation & communication, JNU, New Delhi-110067
Jha Girish Nath, 1999, English-SQL interface for databases (jointly with Prof. Jerry
Morgan, head of the dept of linguistics at U of I, Urbana-Champaign) presented at an
international conference on SALA held at University of Illinois

Jha Girish Nath, Mishra Sudhir K, Chandrashekar R, 2005, Information technology
applications for Sanskrit lexicography: case of Amarakosha procs of the Asialex
conference at National University of Singapore, Singapore

Jha Girish Nath, Mishra, S K, Chandrashekar R, Subash, August, 2005, developing a
Sanskrit Analysis System for Machine Translation presented, at the National Seminar on
Translation Today: state and issues, Deptt. of Linguistics, University of Kerala,
Trivandrum.

Jha Girish Nath, November, 2003 A Prolog Analyzer/Generator for Sanskrit Subanta
Padas Language in India

Jha Girish Nath, November, 2005 Language Technology in India: A survey Issue of
C.S.I. magazine

Jha Girish Nath, February 2004, The System of Panini Language in India, volume 4:2

139

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Jha Girish Nath, March 2004, Generating nominal inflectional morphology in Sanskrit
SIMPLE 04, IIT-Kharagpur Lecture Compendium, Shyama Printing Works, Kharagpur,
WB,

Jha Girish Nath,, Singh G.V., 2004, Astadhyayi Online Tata McGraw Hill, Proc of
International Conference on Speech and Language Technology, New Delhi

Jha, Girish Nath, December, 2003, Current trends in Indian languages
technology, Langauge In India, volume December.

Jijnasu, Pt. Brahmadatt, 2003, ‘Astadhyayi Bhasya Vrtti’ Ramlal Kapoor Trust, Hariyana.
Joshi, Dayashankar Madhusudan, 1971, ‘On expressing karaka, a propos of Panini 2.3.1°
Indian Linguistics, Poona, 32: 107-12.

Joshi, S. D., 1962, ‘Verbs and nouns in Sanskrit’ Indian linguistics 32: 60-63.

Joshi, Shivaram Dattatray, 1974, ‘Panini’s treatment of karaka-relations’, Festschrift
Charudeva Shastri, pp. 258-70.

Joshi, Sivaram Dattatray & Roodbergen J. A. F., 1975, ‘Patafijali's Vyakarana
Mahabhasya, Karakahnika (P. 1.4.23-1.4.55)’ CASS, University of Poona, Poona.

Joshi, Sivaram Dattatray & Roodbergen J. A. F., 1998, The Astadhyayi of Panini’,
Sahitya Akademi, New Delhi.

Jurafsky, Daniel and Martin H. James, Speech and languages processing, Pentice Hall,
India

Jurafsky, Daniel, Speech and languages processing, Pearson Education Pvt.Ltd.,
Singapore, 2005

Kale, M.R., 1972, ‘A Higher Sanskrit grammar’ Motilal Banarasidass, Delhi.

140

75.

76.

77.

78.

79.

80.

81.

82.

83.

&4.

85.

Kapoor, Kapil, 1985.Semantic Structures and the Verb : A propositional analysis
(Intellectual Publications, New Delhi, 1985).

Kapoor, Kapil, 1996.Panini's derivation system as a processing model (to appear in the
proc. of "A Symposium on Machine Aids for Translation and Communication,
11-12 April, School of Computer & Systems Sciences, J.N.U. New Delhi, 1996)

Katre, S.M., 1968, ‘Dictionary of Panini’ Deccan College, Poona.

Katz, J. J., 1972.Semantic Theory (Harper and Row, New York).

Kielhorn, F., 1970, ‘Grammar for Sanskrit Language’ Chowkhamba Sanskrit Series
office, Varanasi.

Kiparsky, P. and Stall, J. F., 1969.Syntactic and Semantic Relation in Panini
(Foundations of Language, Vol.5, 83-117).

Kumar Sachin and Jha Girish Nath, December 2005 A Paninian Sandhi analyzer for
Sanskrit in the proc. at Platinum Jubilee International Conference, L.S.I. at Hyderabad
University, Hyderabad page-35

Macdonell, A., 1979, ‘Sanskrit grammar for students’ Motilal Banarasidass, Delhi.
Mahavir, 1984, ‘Samartha theory of Panini and sentence derivation’ Munshiram
Manoharlal Publishers Pvt. Ltd., Delhi.

Mishra Sudhir K, Jha Girish Nath, 2004, A karaka analyzer for Sanskrit Tata McGraw
Hill, 2004, Proc of International Conference on Speech and Language Technology, New
Delhi

Mishra Sudhir K, Jha Girish Nath, 2005, Identifying verb inflections in Sanskrit

morphology Proc. of SIMPLEOS, IIT Kharagpur

141

86.

87.

88.

&9.

90.

91.

92.

93.

94.

95.

96.

97.

Mishra Sudhir K. Jha Girish Nath, December, 2005, Karaka analysis of complicated
Sanskrit sentences in the proc. at Platinum Jubilee International Conference, L.S.I. at
Hyderabad University, Hyderabad page-34

Mishra, Shrinarayana (ed.), 1996, ‘Kasika with prakas commentary’, Chawkhambha
Sanskrit Sansthan, Varanasi.

Mukharjee, Bendre and Sangal, Natural languages processing, Proceeding, ICON, 2004
Mukharjee, Bendre and Sangal, Natural languages processing, Proceeding, ICON, 2005
Muller, F. Max, 1983, ‘A Sanskrit grammar’ Asian Educational Services, Delhi.

Murti, M. Srimannarayana, 1997, ‘Bhartrhari the Grammarian’ Sahitya Akademi, Delhi.
Narayan Mishra(ed). Kashika of Pt.Vamana and Jayaditya ,Chaukhamba Sanskrit
sansthan, Varanasi,1996.

Narayana, V. N., 1994.Anusaraka: a device to overcome the language barrier (Ph.D.
thesis, Deptt of CSE, IIT, Kanpur, India)

Nautiyal, Chakradhar Hans, 1995, ‘Brhada-anuvad-candrika’ Motilal Banarasidass,
Delhi.

Nomiyama, H., 1992.Machine Translation by case generation (proc. of IV International
Conference on Computational Linguistics, Nantes, France, 714-720)

Norvig, Russell, Artificial Intelligence: A modern approach, Pentic Hall, India

Ostler, N. D. M. (1979). Case-linking: a theory of case and verb diathesis applied to

classical Sanskrit: 434 leaves.

101. Paranjpe, Vinayak W.,1957, ¢ Analysis of case suffixes with special reference to

Panini’s grammar’, Akten des... international Orientalisten-Kongresses(AIOK) 24:574-

77.

142

102. Pen to Paper, The House Magazine of C-DAC,

http://www.cdacindia.com/html/adp/mactrans.asp (accessed: 10 February 2006).

103. Pen to Paper, The House Magazine of C-DAC,

http://www.cdacindia.com/html/connect/3q2000/art1 0a.htm# (accessed: 10 March

2006).
104. P. Navrat and H Ueno (eds), Knowledge Based Software Engineering 10S Press,
Amsterdam, Netherlands, 1998.

105. Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/ (accessed:

12 March 2006).

106. Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/ (accessed: 17 Mach

2006).

107. Peter Naur, Brian Randell,] N Buxton (eds.), Software engineering : concepts and
techniques, Mason/Charter Publisher Inc, New York, 1976

108. Pt.Brahmadatta jigyasu (ed.), 1998, ‘Panini-Astadhyayi’, Ramlal kapoor trust, Sonipat.

109. R.M.K. Sinha, 1989, “A Sanskrit based Word-expert model for machine translation
among Indian languages”, Proc. of workshop on Computer Processing of Asian
Languages, Asian Institute of Technology, Bangkok, Thailand, Sept.26-28, 1989, pp. 82-
91.12.

110. Rajeev Sangal, http://www.elitexindia.com/paper2004/rajeevsangal.pdf (accessed : 7

April 2006).
111. Ramakrishnamacharyulu, K.V., Paninian Linguistics and Computational Linguistics,
Samvit, Series no. 27. Pp. 52-62, Academy of Sanskrit Research, Melkote, Karnataka

(India), 1993.

143

112. RCILTS, School of Computer & System Science, http://rcilts.jnu.ac.in JNU, New

Delhi. (Accessed: 17 April 2006).

113. RCILTS, Utkal University, http://www.ilts-utkal.org/nlppage.htm (accessed : 20 April

2006).

114. Reyle, U. and C. Rohrer (eds.), Natural Language Parsing and Linguistic Theories, D.
Reidel, Dordrecht, 1988.

115. Rochar, R., 1964, ““Agent’ et ‘object’ chez Panini’ JAOS 84, pp 44-54

98. Sanskrit academy http://www.sanskritacademy.org/Achievements.htm (accessed: 7 April

2005).

116. Sanskrit, compound, http://www.sanskrit-

sanscrito.com.ar/english/sanskrit/sanskrit8intro.html#Copulativecompounds (accessed:

30 May 20006).

117. Scharf Peter M., 2002, Panini, Vivaksa and Karaka-rule-ordering, Indian Linguistic
Studies festschrift in honor of George Cardona (Madhav M. Deshpande and Peter E.
Hook ed.), Motilal Banarasidass, Delhi.

118. Shabdabodha, TDIL, Gov. of India, http://tdil.mit.gov.in/download/Shabdabodha.html

(accessed: 22 April 2006).

119. Sharma, K. Madhava Krishna, 1968, ‘Panini Patafijali and Katyayana’ Shri Lal Bahadur
Shastri Rashtriya Sanskrit Vidyapeeth, Delhi.

120. Sharma, Rama Nath, 2003, ‘the Astadhyayi of Panini’, Munshiram Manoharlal
Publishers Pvt. Ltd., Delhi.

121. Shastri Charu Deva, 1991, ‘Panini : Re-interpreted” Motilal Banarasidass, Delhi.

144

122. Singh, Jag Dev and K. Doraswamy, 1972, The case: Tolka ppiyam and Panini, a
comparative study’, Kurukshetra University Research Journal 4: 119-29.
123. Singh, Jag Dev, 1974, ‘Panini’s theory of karakas’, International Journal of Dravidian
linguistics, Trivandrum, 3:287-320.
124. Sinha, Anil C., 1973, ‘Generative semantics and Panini’s karaka’, Journal of the
Oriental Institute, Baroda (JOIB) 23: 27-39.
125. Subash and Jha Girish Nath, December 2005, Morphological analysis of nominal
inflections in Sanskrit in the proc. at Platinum Jubilee International Conference, L.S.1. at
Hyderabad University, Hyderabad page 34

126. TDIL, http://tdil.mit.gov.in/mat/ach-mat.htm (accessed: 10, November 2005).

127. TDIL, http://tdil.mit.gov.in/TDIL-OCT-

2003/machine%?20translation%20system%?20.pdf (accessed: 20 November 2005).

128. The Web server, Apache Tomcat, http://www.apache.org/ (accessed: 12 July 2006).

129. Vivek Quarterly journal on Artificial Intelligence, NCST, Mumbali,

http://www.ncst.ernet.in/kbcs/vivek/issues/13.2/sumam/sumam.html (accessed: 27 April

2006).

130. Whitney, W.D., 2002, ‘History of Sanskrit grammar’ Sanjay prakashan, Delhi.

131. Whitney, William Dwight, 1983, ‘Sanskrit Grammar’ Motilal Banarasidass, Delhi.

132. Whitney, William Dwight, 1983, ‘The Root verb-forms and Primary derivatives of the
Sanskrit language’ Motilal Banarasidass, Delhi.

133. Yogi, Satyabhushana & Shashikumar, 1985, ‘Nighantu tatha nirukta’, Motilal

Banarasidass, Delhi.

145

146

147

